原始和掺镍Fe3GaTe2薄片的持久铁磁基态

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ki-Hoon Son, Sehoon Oh, Junho Lee, Sobin Yun, Yunseo Shin, Shaohua Yan, Chaun Jang, Hong-Sub Lee, Hechang Lei, Se Young Park, Hyejin Ryu
{"title":"原始和掺镍Fe3GaTe2薄片的持久铁磁基态","authors":"Ki-Hoon Son,&nbsp;Sehoon Oh,&nbsp;Junho Lee,&nbsp;Sobin Yun,&nbsp;Yunseo Shin,&nbsp;Shaohua Yan,&nbsp;Chaun Jang,&nbsp;Hong-Sub Lee,&nbsp;Hechang Lei,&nbsp;Se Young Park,&nbsp;Hyejin Ryu","doi":"10.1186/s40580-024-00458-x","DOIUrl":null,"url":null,"abstract":"<div><p>Room-temperature magnetism and its stability upon miniaturization are essential characteristics required for materials for spintronic devices and information storage. Among various candidates, Fe<sub>3</sub>GaTe<sub>2</sub> stands out due to its high Curie temperature and strong perpendicular magnetic anisotropy (PMA), recently gaining large attention as one of the promising candidate materials for spintronics applications. In this study, we measured the thickness-dependent ferromagnetic properties of Fe<sub>3</sub>GaTe<sub>2</sub> and (Fe<sub>1 − x</sub>Ni<sub>x</sub>)<sub>3</sub>GaTe<sub>2</sub> (with x = 0.1) flakes. We observed that both pristine and Ni-doped Fe<sub>3</sub>GaTe<sub>2</sub> exhibit persistent ferromagnetism, with only a minor decrease in T<sub>C</sub> as the thickness is reduced to a few tens of nanometers. This capacity to retain robust ferromagnetic properties at reduced dimensions is highly advantageous for thin-film applications, which is crucial for the scaling of spintronic devices. Understanding and controlling thickness-dependent magnetic properties is fundamental to harnessing the full potential of Fe<sub>3</sub>GaTe<sub>2</sub> in van der Waals magnetic heterostructures and advanced spintronic technologies.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00458-x","citationCount":"0","resultStr":"{\"title\":\"Persistent ferromagnetic ground state in pristine and Ni-doped Fe3GaTe2 flakes\",\"authors\":\"Ki-Hoon Son,&nbsp;Sehoon Oh,&nbsp;Junho Lee,&nbsp;Sobin Yun,&nbsp;Yunseo Shin,&nbsp;Shaohua Yan,&nbsp;Chaun Jang,&nbsp;Hong-Sub Lee,&nbsp;Hechang Lei,&nbsp;Se Young Park,&nbsp;Hyejin Ryu\",\"doi\":\"10.1186/s40580-024-00458-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Room-temperature magnetism and its stability upon miniaturization are essential characteristics required for materials for spintronic devices and information storage. Among various candidates, Fe<sub>3</sub>GaTe<sub>2</sub> stands out due to its high Curie temperature and strong perpendicular magnetic anisotropy (PMA), recently gaining large attention as one of the promising candidate materials for spintronics applications. In this study, we measured the thickness-dependent ferromagnetic properties of Fe<sub>3</sub>GaTe<sub>2</sub> and (Fe<sub>1 − x</sub>Ni<sub>x</sub>)<sub>3</sub>GaTe<sub>2</sub> (with x = 0.1) flakes. We observed that both pristine and Ni-doped Fe<sub>3</sub>GaTe<sub>2</sub> exhibit persistent ferromagnetism, with only a minor decrease in T<sub>C</sub> as the thickness is reduced to a few tens of nanometers. This capacity to retain robust ferromagnetic properties at reduced dimensions is highly advantageous for thin-film applications, which is crucial for the scaling of spintronic devices. Understanding and controlling thickness-dependent magnetic properties is fundamental to harnessing the full potential of Fe<sub>3</sub>GaTe<sub>2</sub> in van der Waals magnetic heterostructures and advanced spintronic technologies.</p></div>\",\"PeriodicalId\":712,\"journal\":{\"name\":\"Nano Convergence\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":13.4000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00458-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Convergence\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40580-024-00458-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00458-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

室温磁性及其小型化后的稳定性是自旋电子器件和信息存储材料所需要的基本特性。在各种候选材料中,Fe3GaTe2因其高居里温度和强垂直磁各向异性(PMA)而脱颖而出,近年来作为自旋电子学应用的有前途的候选材料之一而受到广泛关注。在这项研究中,我们测量了Fe3GaTe2和(Fe1−xNix)3GaTe2 (x = 0.1)薄片的厚度依赖性铁磁性能。我们观察到原始的和ni掺杂的Fe3GaTe2都表现出持久的铁磁性,当厚度减少到几十纳米时,TC只有轻微的下降。这种在减小尺寸时保持强大铁磁性的能力对于薄膜应用非常有利,这对于自旋电子器件的缩放至关重要。理解和控制与厚度相关的磁性是充分利用Fe3GaTe2在范德华磁异质结构和先进自旋电子技术中的全部潜力的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistent ferromagnetic ground state in pristine and Ni-doped Fe3GaTe2 flakes

Room-temperature magnetism and its stability upon miniaturization are essential characteristics required for materials for spintronic devices and information storage. Among various candidates, Fe3GaTe2 stands out due to its high Curie temperature and strong perpendicular magnetic anisotropy (PMA), recently gaining large attention as one of the promising candidate materials for spintronics applications. In this study, we measured the thickness-dependent ferromagnetic properties of Fe3GaTe2 and (Fe1 − xNix)3GaTe2 (with x = 0.1) flakes. We observed that both pristine and Ni-doped Fe3GaTe2 exhibit persistent ferromagnetism, with only a minor decrease in TC as the thickness is reduced to a few tens of nanometers. This capacity to retain robust ferromagnetic properties at reduced dimensions is highly advantageous for thin-film applications, which is crucial for the scaling of spintronic devices. Understanding and controlling thickness-dependent magnetic properties is fundamental to harnessing the full potential of Fe3GaTe2 in van der Waals magnetic heterostructures and advanced spintronic technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信