不同非均匀磁场对微液滴形成机理的影响研究

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Lixiang Lv, Yibiao Chen, Yangyang Jiang, Gulite Wang, Jiacheng Lu
{"title":"不同非均匀磁场对微液滴形成机理的影响研究","authors":"Lixiang Lv,&nbsp;Yibiao Chen,&nbsp;Yangyang Jiang,&nbsp;Gulite Wang,&nbsp;Jiacheng Lu","doi":"10.1007/s10404-024-02780-6","DOIUrl":null,"url":null,"abstract":"<div><p>Microfluidic technology is widely applied in biological detection, primarily utilizing microvalves to control and regulate fluid flow. Increasing attention and research have recently been directed toward magnetic droplet valves, which use magnetic fields to control magnetic droplets in microchannels for sealing purposes. A novel droplet formation technique has been proposed, employing a permanent magnet to attract magnetic fluid through a step emulsification process, thus controllably forming the magnetic droplets required for microvalves. However, the current understanding of the generation mechanism of magnetic fluid step emulsification remains insufficiently deep, with inadequate force analysis during the expansion stage of the magnetic fluid. This shortcoming results in an unclear comprehension of the relationship between the magnetic field and step emulsification formation, impeding the accurate prediction and control of droplet size and formation rate, thereby compromising the performance and reliability of magnetic droplet valves. Therefore, the study initially analyzes the forces acting on the magnetic fluid in a non-uniform magnetic field theoretically and systematically explores the step emulsification mechanism of magnetic fluids through a combination of numerical simulations and experimental validations. The magnetic field inhomogeneity degree directly affects the microdroplet formation process. As the lateral distance between the permanent magnet and the channel outlet increases, the magnetic field inhomogeneity degree decreases, resulting in larger droplet volumes and lower formation rates. Through theoretical analysis and experimental validation, this study provides a significant theoretical foundation and practical guidance for forming magnetic fluid in microfluidic systems.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on effects of magnetic fields of different inhomogeneous on the formation mechanism of microdroplets\",\"authors\":\"Lixiang Lv,&nbsp;Yibiao Chen,&nbsp;Yangyang Jiang,&nbsp;Gulite Wang,&nbsp;Jiacheng Lu\",\"doi\":\"10.1007/s10404-024-02780-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microfluidic technology is widely applied in biological detection, primarily utilizing microvalves to control and regulate fluid flow. Increasing attention and research have recently been directed toward magnetic droplet valves, which use magnetic fields to control magnetic droplets in microchannels for sealing purposes. A novel droplet formation technique has been proposed, employing a permanent magnet to attract magnetic fluid through a step emulsification process, thus controllably forming the magnetic droplets required for microvalves. However, the current understanding of the generation mechanism of magnetic fluid step emulsification remains insufficiently deep, with inadequate force analysis during the expansion stage of the magnetic fluid. This shortcoming results in an unclear comprehension of the relationship between the magnetic field and step emulsification formation, impeding the accurate prediction and control of droplet size and formation rate, thereby compromising the performance and reliability of magnetic droplet valves. Therefore, the study initially analyzes the forces acting on the magnetic fluid in a non-uniform magnetic field theoretically and systematically explores the step emulsification mechanism of magnetic fluids through a combination of numerical simulations and experimental validations. The magnetic field inhomogeneity degree directly affects the microdroplet formation process. As the lateral distance between the permanent magnet and the channel outlet increases, the magnetic field inhomogeneity degree decreases, resulting in larger droplet volumes and lower formation rates. Through theoretical analysis and experimental validation, this study provides a significant theoretical foundation and practical guidance for forming magnetic fluid in microfluidic systems.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02780-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02780-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

微流控技术在生物检测中有着广泛的应用,主要是利用微阀来控制和调节流体的流动。磁液滴阀是一种利用磁场控制微通道中的磁液滴以达到密封目的的阀门,近年来受到越来越多的关注和研究。提出了一种新的液滴形成技术,利用永磁体通过步进乳化过程吸引磁性流体,从而可控地形成微阀所需的磁性液滴。然而,目前对磁流体阶梯乳化产生机理的认识还不够深入,对磁流体膨胀阶段的受力分析不足。这一缺陷导致对磁场与阶梯乳化形成之间的关系认识不清,阻碍了对液滴尺寸和形成速率的准确预测和控制,从而影响了磁液滴阀的性能和可靠性。因此,本研究从理论上初步分析了非均匀磁场中作用在磁流体上的力,并通过数值模拟与实验验证相结合,系统探讨了磁流体的阶梯乳化机理。磁场不均匀程度直接影响微液滴的形成过程。随着永磁体与通道出口横向距离的增大,磁场不均匀度减小,液滴体积增大,形成速率降低。通过理论分析和实验验证,本研究为微流控系统中磁流体的形成提供了重要的理论基础和实践指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study on effects of magnetic fields of different inhomogeneous on the formation mechanism of microdroplets

Study on effects of magnetic fields of different inhomogeneous on the formation mechanism of microdroplets

Microfluidic technology is widely applied in biological detection, primarily utilizing microvalves to control and regulate fluid flow. Increasing attention and research have recently been directed toward magnetic droplet valves, which use magnetic fields to control magnetic droplets in microchannels for sealing purposes. A novel droplet formation technique has been proposed, employing a permanent magnet to attract magnetic fluid through a step emulsification process, thus controllably forming the magnetic droplets required for microvalves. However, the current understanding of the generation mechanism of magnetic fluid step emulsification remains insufficiently deep, with inadequate force analysis during the expansion stage of the magnetic fluid. This shortcoming results in an unclear comprehension of the relationship between the magnetic field and step emulsification formation, impeding the accurate prediction and control of droplet size and formation rate, thereby compromising the performance and reliability of magnetic droplet valves. Therefore, the study initially analyzes the forces acting on the magnetic fluid in a non-uniform magnetic field theoretically and systematically explores the step emulsification mechanism of magnetic fluids through a combination of numerical simulations and experimental validations. The magnetic field inhomogeneity degree directly affects the microdroplet formation process. As the lateral distance between the permanent magnet and the channel outlet increases, the magnetic field inhomogeneity degree decreases, resulting in larger droplet volumes and lower formation rates. Through theoretical analysis and experimental validation, this study provides a significant theoretical foundation and practical guidance for forming magnetic fluid in microfluidic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信