Ruiqi Wang, Yantao Zhou, Aoying Zhang, Ying Wang, Kexin Ding, Mingtao Tan, Dun Jiang, Shanchun Yan
{"title":"低适合度寄主植物紫椴诱导防御:节肢动物-植物相互作用的视角","authors":"Ruiqi Wang, Yantao Zhou, Aoying Zhang, Ying Wang, Kexin Ding, Mingtao Tan, Dun Jiang, Shanchun Yan","doi":"10.1007/s11829-024-10121-1","DOIUrl":null,"url":null,"abstract":"<div><p>Inducible defense is an important anti-insect strategy in plants. This study investigated whether larval feeding by Hyphantria cunea at low-density and high-density levels can initiate inducible defense responses in the low-fitness host plant Tilia amurensis on the 7th- and 21th-day post-feeding. The results revealed significant alterations in the nutrient composition (e.g., amino acids, soluble sugars, and total proteins) within T. amurensis, with notable decreases observed on the 7th-day post-feeding, followed by increases on the 21st day, respectively. Specifically, the low-density feeding group prompted significant increases in tannin, total phenols, and total flavonoids on the 7th day, whereas the high-density feeding group induced significant decreases in these compounds. Conversely, total alkaloid levels exhibited an inverse pattern, with lignin contents notably decreasing. By the 21st-day post-feeding, all secondary metabolites demonstrated significant increases. Expression analysis of flavonoid biosynthetic genes mirrors the changes observed in the total flavonoid content. Furthermore, larval feeding activates the α-linoleic acid metabolism pathway consistently across all time points. Subsequent generations of H. cunea larvae in low-density feeding and high-density feeding groups demonstrated decreased growth, along with downregulation of growth regulatory genes and key genes involved in energy metabolism, digestion, and detoxification. Notably, the expression of digestive gene LIP10 and detoxification genes GST18 and CARE14 exhibits adaptive regulation in response to T. amurensis’ inducible defense. Overall, larval feeding by H. cunea elicits a robust and enduring inducible defense response in T. amurensis, ultimately decreasing the fitness of the subsequent generations of H. cunea larvae on T. amabilis.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8409,"journal":{"name":"Arthropod-Plant Interactions","volume":"19 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyphantria cunea-mediated inducible defense in low-fitness host plant Tilia amurensis: An arthropod–plant interaction perspective\",\"authors\":\"Ruiqi Wang, Yantao Zhou, Aoying Zhang, Ying Wang, Kexin Ding, Mingtao Tan, Dun Jiang, Shanchun Yan\",\"doi\":\"10.1007/s11829-024-10121-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inducible defense is an important anti-insect strategy in plants. This study investigated whether larval feeding by Hyphantria cunea at low-density and high-density levels can initiate inducible defense responses in the low-fitness host plant Tilia amurensis on the 7th- and 21th-day post-feeding. The results revealed significant alterations in the nutrient composition (e.g., amino acids, soluble sugars, and total proteins) within T. amurensis, with notable decreases observed on the 7th-day post-feeding, followed by increases on the 21st day, respectively. Specifically, the low-density feeding group prompted significant increases in tannin, total phenols, and total flavonoids on the 7th day, whereas the high-density feeding group induced significant decreases in these compounds. Conversely, total alkaloid levels exhibited an inverse pattern, with lignin contents notably decreasing. By the 21st-day post-feeding, all secondary metabolites demonstrated significant increases. Expression analysis of flavonoid biosynthetic genes mirrors the changes observed in the total flavonoid content. Furthermore, larval feeding activates the α-linoleic acid metabolism pathway consistently across all time points. Subsequent generations of H. cunea larvae in low-density feeding and high-density feeding groups demonstrated decreased growth, along with downregulation of growth regulatory genes and key genes involved in energy metabolism, digestion, and detoxification. Notably, the expression of digestive gene LIP10 and detoxification genes GST18 and CARE14 exhibits adaptive regulation in response to T. amurensis’ inducible defense. Overall, larval feeding by H. cunea elicits a robust and enduring inducible defense response in T. amurensis, ultimately decreasing the fitness of the subsequent generations of H. cunea larvae on T. amabilis.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":8409,\"journal\":{\"name\":\"Arthropod-Plant Interactions\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arthropod-Plant Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11829-024-10121-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod-Plant Interactions","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11829-024-10121-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Hyphantria cunea-mediated inducible defense in low-fitness host plant Tilia amurensis: An arthropod–plant interaction perspective
Inducible defense is an important anti-insect strategy in plants. This study investigated whether larval feeding by Hyphantria cunea at low-density and high-density levels can initiate inducible defense responses in the low-fitness host plant Tilia amurensis on the 7th- and 21th-day post-feeding. The results revealed significant alterations in the nutrient composition (e.g., amino acids, soluble sugars, and total proteins) within T. amurensis, with notable decreases observed on the 7th-day post-feeding, followed by increases on the 21st day, respectively. Specifically, the low-density feeding group prompted significant increases in tannin, total phenols, and total flavonoids on the 7th day, whereas the high-density feeding group induced significant decreases in these compounds. Conversely, total alkaloid levels exhibited an inverse pattern, with lignin contents notably decreasing. By the 21st-day post-feeding, all secondary metabolites demonstrated significant increases. Expression analysis of flavonoid biosynthetic genes mirrors the changes observed in the total flavonoid content. Furthermore, larval feeding activates the α-linoleic acid metabolism pathway consistently across all time points. Subsequent generations of H. cunea larvae in low-density feeding and high-density feeding groups demonstrated decreased growth, along with downregulation of growth regulatory genes and key genes involved in energy metabolism, digestion, and detoxification. Notably, the expression of digestive gene LIP10 and detoxification genes GST18 and CARE14 exhibits adaptive regulation in response to T. amurensis’ inducible defense. Overall, larval feeding by H. cunea elicits a robust and enduring inducible defense response in T. amurensis, ultimately decreasing the fitness of the subsequent generations of H. cunea larvae on T. amabilis.
期刊介绍:
Arthropod-Plant Interactions is dedicated to publishing high quality original papers and reviews with a broad fundamental or applied focus on ecological, biological, and evolutionary aspects of the interactions between insects and other arthropods with plants. Coverage extends to all aspects of such interactions including chemical, biochemical, genetic, and molecular analysis, as well reporting on multitrophic studies, ecophysiology, and mutualism.
Arthropod-Plant Interactions encourages the submission of forum papers that challenge prevailing hypotheses. The journal encourages a diversity of opinion by presenting both invited and unsolicited review papers.