Mohammed Y. Tharwan, Ahmed Amine Daikh, Amr E. Assie, Ali Alnujaie, Mohamed A. Eltaher
{"title":"正交各向异性弹性地基上多向多孔金属泡沫纳米壳的尺寸依赖性屈曲","authors":"Mohammed Y. Tharwan, Ahmed Amine Daikh, Amr E. Assie, Ali Alnujaie, Mohamed A. Eltaher","doi":"10.1007/s43452-024-01074-6","DOIUrl":null,"url":null,"abstract":"<div><p>This research addresses challenges in theoretical modeling of complex metal foam nanoshell structures and introduces a more accurate approach. It utilizes a nonclassical nanomechanics continuum approach to model novel tridirectionally porous metal foam nanoshell structures with varying microstructures, incorporating intrinsic characteristic lengths and spatial variations in material properties. The research endeavors to analyze the buckling response exhibited by multidirectional functionally graded (FG) porous metal foam nanoshells resting on an orthotropic elastic foundation. Employing the nonlocal higher-order strain gradient theory in conjunction with the principle of virtual work, the study establishes static stability equilibrium equations. Methodologically, the Galerkin method is applied to derive analytical solutions for critical buckling loads under diverse boundary conditions. Within the scope of investigation, two distinct types of porous shells are examined: softcore (SC) and hardcore (HC). These shells are further characterized by five distribution patterns: tridirectional (Type-A), bidirectional (Type-B and Type-C), transverse unidirectional (Type-D), and axial unidirectional (Type-E). This model demonstrates its efficacy in analyzing and designing shell element structures across a broad spectrum of industries, including motorcycle helmet manufacturing, petrochemical processing, aerospace engineering, and civil construction.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size-dependent buckling of multidirectional porous metal foam nanoshells resting on an orthotropic elastic foundation\",\"authors\":\"Mohammed Y. Tharwan, Ahmed Amine Daikh, Amr E. Assie, Ali Alnujaie, Mohamed A. Eltaher\",\"doi\":\"10.1007/s43452-024-01074-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research addresses challenges in theoretical modeling of complex metal foam nanoshell structures and introduces a more accurate approach. It utilizes a nonclassical nanomechanics continuum approach to model novel tridirectionally porous metal foam nanoshell structures with varying microstructures, incorporating intrinsic characteristic lengths and spatial variations in material properties. The research endeavors to analyze the buckling response exhibited by multidirectional functionally graded (FG) porous metal foam nanoshells resting on an orthotropic elastic foundation. Employing the nonlocal higher-order strain gradient theory in conjunction with the principle of virtual work, the study establishes static stability equilibrium equations. Methodologically, the Galerkin method is applied to derive analytical solutions for critical buckling loads under diverse boundary conditions. Within the scope of investigation, two distinct types of porous shells are examined: softcore (SC) and hardcore (HC). These shells are further characterized by five distribution patterns: tridirectional (Type-A), bidirectional (Type-B and Type-C), transverse unidirectional (Type-D), and axial unidirectional (Type-E). This model demonstrates its efficacy in analyzing and designing shell element structures across a broad spectrum of industries, including motorcycle helmet manufacturing, petrochemical processing, aerospace engineering, and civil construction.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-024-01074-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01074-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Size-dependent buckling of multidirectional porous metal foam nanoshells resting on an orthotropic elastic foundation
This research addresses challenges in theoretical modeling of complex metal foam nanoshell structures and introduces a more accurate approach. It utilizes a nonclassical nanomechanics continuum approach to model novel tridirectionally porous metal foam nanoshell structures with varying microstructures, incorporating intrinsic characteristic lengths and spatial variations in material properties. The research endeavors to analyze the buckling response exhibited by multidirectional functionally graded (FG) porous metal foam nanoshells resting on an orthotropic elastic foundation. Employing the nonlocal higher-order strain gradient theory in conjunction with the principle of virtual work, the study establishes static stability equilibrium equations. Methodologically, the Galerkin method is applied to derive analytical solutions for critical buckling loads under diverse boundary conditions. Within the scope of investigation, two distinct types of porous shells are examined: softcore (SC) and hardcore (HC). These shells are further characterized by five distribution patterns: tridirectional (Type-A), bidirectional (Type-B and Type-C), transverse unidirectional (Type-D), and axial unidirectional (Type-E). This model demonstrates its efficacy in analyzing and designing shell element structures across a broad spectrum of industries, including motorcycle helmet manufacturing, petrochemical processing, aerospace engineering, and civil construction.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.