(1-x)BaTiO3-xCoFe2O4复合材料多铁性的相关性

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Layiq Zia, Ghulam Hassnain Jaffari, Jimenez Ricardo, Amorín Harvey, Ping Kwan Johnny Wong, Ismat Shah
{"title":"(1-x)BaTiO3-xCoFe2O4复合材料多铁性的相关性","authors":"Layiq Zia,&nbsp;Ghulam Hassnain Jaffari,&nbsp;Jimenez Ricardo,&nbsp;Amorín Harvey,&nbsp;Ping Kwan Johnny Wong,&nbsp;Ismat Shah","doi":"10.1007/s10853-024-10488-9","DOIUrl":null,"url":null,"abstract":"<div><p>Multiferroic materials, which exhibit coupled ferroelectric and magnetic properties, hold immense promise for multifunctional device applications. Here, a multistep synthesis method, involving chemical synthesis, mechanical milling, and Spark Plasma Sintering, was utilized to fabricate (1-<i>x</i>)BaTiO<sub>3</sub>-<i>x</i>CoFe<sub>2</sub>O<sub>4</sub> (BTO-CFO) compacted ceramics composites with <i>x</i> = 0.1, 0.2, 0.3, and 0.4. Controlled high pressure and pulsed current facilitated rapid densification, yielding high-density fine microstructures. Structural analysis confirmed the coexistence of tetragonal BaTiO<sub>3</sub> (BTO) and cubic spinel CoFe<sub>2</sub>O<sub>4</sub> (CFO) phases, forming 0–3 type multiferroic composites. Microstructural analysis revealed CFO grain clustering within the BTO matrix. The temperature-dependent magnetization curve of CFO shows an increase in magnetization within the temperature range of BTO ferroelectric phase transition, suggesting a strain-mediated magnetoelectric coupling. Temperature and frequency dependence of dielectric permittivity highlighted significant CFO conductivity contribution. Ferroelectric hysteresis and magnetoelectric coupling were observed predominantly in low CFO content samples, with differences in magnetoelectric coefficient values attributed to preferential ferroelectric polarization alignment. Our findings suggest that achieving high interface coupling is very challenging due to high leakage current from the magnetic phase.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 48","pages":"22149 - 22165"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation between the multiferroic properties in (1-x)BaTiO3-xCoFe2O4 composites\",\"authors\":\"Layiq Zia,&nbsp;Ghulam Hassnain Jaffari,&nbsp;Jimenez Ricardo,&nbsp;Amorín Harvey,&nbsp;Ping Kwan Johnny Wong,&nbsp;Ismat Shah\",\"doi\":\"10.1007/s10853-024-10488-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multiferroic materials, which exhibit coupled ferroelectric and magnetic properties, hold immense promise for multifunctional device applications. Here, a multistep synthesis method, involving chemical synthesis, mechanical milling, and Spark Plasma Sintering, was utilized to fabricate (1-<i>x</i>)BaTiO<sub>3</sub>-<i>x</i>CoFe<sub>2</sub>O<sub>4</sub> (BTO-CFO) compacted ceramics composites with <i>x</i> = 0.1, 0.2, 0.3, and 0.4. Controlled high pressure and pulsed current facilitated rapid densification, yielding high-density fine microstructures. Structural analysis confirmed the coexistence of tetragonal BaTiO<sub>3</sub> (BTO) and cubic spinel CoFe<sub>2</sub>O<sub>4</sub> (CFO) phases, forming 0–3 type multiferroic composites. Microstructural analysis revealed CFO grain clustering within the BTO matrix. The temperature-dependent magnetization curve of CFO shows an increase in magnetization within the temperature range of BTO ferroelectric phase transition, suggesting a strain-mediated magnetoelectric coupling. Temperature and frequency dependence of dielectric permittivity highlighted significant CFO conductivity contribution. Ferroelectric hysteresis and magnetoelectric coupling were observed predominantly in low CFO content samples, with differences in magnetoelectric coefficient values attributed to preferential ferroelectric polarization alignment. Our findings suggest that achieving high interface coupling is very challenging due to high leakage current from the magnetic phase.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"59 48\",\"pages\":\"22149 - 22165\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-024-10488-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10488-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多铁性材料表现出铁电和磁性的耦合特性,在多功能器件应用中具有巨大的前景。本文采用化学合成、机械铣削和火花等离子烧结等多步骤合成方法,制备了x = 0.1、0.2、0.3和0.4的(1-x)BaTiO3-xCoFe2O4 (BTO-CFO)致密陶瓷复合材料。控制高压和脉冲电流有利于快速致密化,产生高密度的精细组织。结构分析证实了四方BaTiO3 (BTO)相和立方尖晶石CoFe2O4 (CFO)相共存,形成了0-3型多铁复合材料。显微组织分析显示CFO晶粒在BTO基体内聚集。CFO的磁化曲线显示,在BTO铁电相变温度范围内,磁化强度增加,表明存在应变介导的磁电耦合。电介质介电常数的温度和频率依赖性突出了CFO电导率的显著贡献。在低CFO含量的样品中,主要观察到铁电滞后和磁电耦合,磁电系数值的差异归因于铁电极化取向的优先性。我们的研究结果表明,由于磁相的高泄漏电流,实现高界面耦合是非常具有挑战性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation between the multiferroic properties in (1-x)BaTiO3-xCoFe2O4 composites

Multiferroic materials, which exhibit coupled ferroelectric and magnetic properties, hold immense promise for multifunctional device applications. Here, a multistep synthesis method, involving chemical synthesis, mechanical milling, and Spark Plasma Sintering, was utilized to fabricate (1-x)BaTiO3-xCoFe2O4 (BTO-CFO) compacted ceramics composites with x = 0.1, 0.2, 0.3, and 0.4. Controlled high pressure and pulsed current facilitated rapid densification, yielding high-density fine microstructures. Structural analysis confirmed the coexistence of tetragonal BaTiO3 (BTO) and cubic spinel CoFe2O4 (CFO) phases, forming 0–3 type multiferroic composites. Microstructural analysis revealed CFO grain clustering within the BTO matrix. The temperature-dependent magnetization curve of CFO shows an increase in magnetization within the temperature range of BTO ferroelectric phase transition, suggesting a strain-mediated magnetoelectric coupling. Temperature and frequency dependence of dielectric permittivity highlighted significant CFO conductivity contribution. Ferroelectric hysteresis and magnetoelectric coupling were observed predominantly in low CFO content samples, with differences in magnetoelectric coefficient values attributed to preferential ferroelectric polarization alignment. Our findings suggest that achieving high interface coupling is very challenging due to high leakage current from the magnetic phase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信