{"title":"磁性分子印迹聚合物-沸石咪唑骨架-8电化学传感器的构建及其对3,4-苯并芘的检测","authors":"Binbin Zhou, Xinyi Li, Hao Xie, Xingxin Sheng, Lijun Huang, Yongbo Zhu, Meng Liang, Ming Zhong","doi":"10.1007/s00604-024-06858-4","DOIUrl":null,"url":null,"abstract":"<div><p> A novel molecular-imprinted electrochemical sensor for 3,4-benzopyrene (3, 4-BaP) in food samples, with high sensitivity and selective detection, is introduced. Firstly, graphene oxide was modified onto a glassy carbon electrode (GCE) by electroreduction deposition to form an RGO/GCE sensing platform, thereby enhancing the sensitivity and stability of the sensor. Then, magnetic molecularly imprinted polymer-zeolite imidazole framework-8 (MMIP-ZIF-8) was synthesized in one step using the crystal growth method and modified onto RGO/GCE, endowing the sensor with good adsorption capacity and selectivity. The performance of the sensor for 3, 4-BaP was studied using differential pulse voltammetry (DPV), and the detection conditions of the constructed sensor were optimized. The results showed that under the optimal conditions, the constructed sensor exhibited a wide linear range (0.5 ~ 1000 nmol L<sup>−1</sup>), a low limit of detection (0.16 nmol L<sup>−1</sup>), and good selectivity and stability for the detection of 3, 4-BaP. It also showed a good recovery (99.74 ~ 102.58%) for the detection of 3, 4-BaP in actual corn meal samples. The MMIP-ZIF-8/RGO/GCE sensor developed has potential application prospects in the precise detection of 3, 4-BaP in food.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of an electrochemical sensor based on magnetic molecularly imprinted polymer-zeolite imidazole framework-8 for detection of 3,4-benzopyrene\",\"authors\":\"Binbin Zhou, Xinyi Li, Hao Xie, Xingxin Sheng, Lijun Huang, Yongbo Zhu, Meng Liang, Ming Zhong\",\"doi\":\"10.1007/s00604-024-06858-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p> A novel molecular-imprinted electrochemical sensor for 3,4-benzopyrene (3, 4-BaP) in food samples, with high sensitivity and selective detection, is introduced. Firstly, graphene oxide was modified onto a glassy carbon electrode (GCE) by electroreduction deposition to form an RGO/GCE sensing platform, thereby enhancing the sensitivity and stability of the sensor. Then, magnetic molecularly imprinted polymer-zeolite imidazole framework-8 (MMIP-ZIF-8) was synthesized in one step using the crystal growth method and modified onto RGO/GCE, endowing the sensor with good adsorption capacity and selectivity. The performance of the sensor for 3, 4-BaP was studied using differential pulse voltammetry (DPV), and the detection conditions of the constructed sensor were optimized. The results showed that under the optimal conditions, the constructed sensor exhibited a wide linear range (0.5 ~ 1000 nmol L<sup>−1</sup>), a low limit of detection (0.16 nmol L<sup>−1</sup>), and good selectivity and stability for the detection of 3, 4-BaP. It also showed a good recovery (99.74 ~ 102.58%) for the detection of 3, 4-BaP in actual corn meal samples. The MMIP-ZIF-8/RGO/GCE sensor developed has potential application prospects in the precise detection of 3, 4-BaP in food.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06858-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06858-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Construction of an electrochemical sensor based on magnetic molecularly imprinted polymer-zeolite imidazole framework-8 for detection of 3,4-benzopyrene
A novel molecular-imprinted electrochemical sensor for 3,4-benzopyrene (3, 4-BaP) in food samples, with high sensitivity and selective detection, is introduced. Firstly, graphene oxide was modified onto a glassy carbon electrode (GCE) by electroreduction deposition to form an RGO/GCE sensing platform, thereby enhancing the sensitivity and stability of the sensor. Then, magnetic molecularly imprinted polymer-zeolite imidazole framework-8 (MMIP-ZIF-8) was synthesized in one step using the crystal growth method and modified onto RGO/GCE, endowing the sensor with good adsorption capacity and selectivity. The performance of the sensor for 3, 4-BaP was studied using differential pulse voltammetry (DPV), and the detection conditions of the constructed sensor were optimized. The results showed that under the optimal conditions, the constructed sensor exhibited a wide linear range (0.5 ~ 1000 nmol L−1), a low limit of detection (0.16 nmol L−1), and good selectivity and stability for the detection of 3, 4-BaP. It also showed a good recovery (99.74 ~ 102.58%) for the detection of 3, 4-BaP in actual corn meal samples. The MMIP-ZIF-8/RGO/GCE sensor developed has potential application prospects in the precise detection of 3, 4-BaP in food.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.