辐射混合纳米流体在拉伸/收缩薄片上的化学反应废物排放浓度分析

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Ashish Mishra
{"title":"辐射混合纳米流体在拉伸/收缩薄片上的化学反应废物排放浓度分析","authors":"Ashish Mishra","doi":"10.1007/s11043-024-09752-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the hydrothermal characteristics of hybrid nanofluid flow over a sheet in the presence of thermal radiation, chemical reaction, and waste discharge concentration to develop effective waste treatment and pollution control methods. The partial differential equations (PDEs) governing the conservation of mass, momentum, energy, and concentration, which are nonlinear, are transformed into ordinary differential equations (ODEs) using similarity transformations. The next stage in the process is to solve these differential equations using the bvp4c technique available in MATLAB. The study thoroughly explores several nondimensional parameters, including suction/blowing, Darcy number, stretching/shrinking parameter, local pollutant external source parameter, and chemical reaction parameter, visually illustrating their impacts on flow patterns, thermal distribution, and concentration profiles. The scrutiny focuses on key engineering parameters such as skin friction coefficient, heat transfer rate, and mass transfer rate, supported by tabular data that enhances the quantitative evaluation of these parameters. It is found that the velocity of hybrid nanofluid upsurges with the increment in the stretching/shrinking parameter and Darcy number. Also, results obtained reveal that the concentration profiles experience an upward shift with an increase in unsteadiness parameter and local pollutant external source parameter. Moreover, the Sherwood number decreases by 10.65% as the local pollutant external source parameter, ranging from 0.03 to 0.09, is increased.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of waste discharge concentration in radiative hybrid nanofluid flow over a stretching/shrinking sheet with chemical reaction\",\"authors\":\"Ashish Mishra\",\"doi\":\"10.1007/s11043-024-09752-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study examines the hydrothermal characteristics of hybrid nanofluid flow over a sheet in the presence of thermal radiation, chemical reaction, and waste discharge concentration to develop effective waste treatment and pollution control methods. The partial differential equations (PDEs) governing the conservation of mass, momentum, energy, and concentration, which are nonlinear, are transformed into ordinary differential equations (ODEs) using similarity transformations. The next stage in the process is to solve these differential equations using the bvp4c technique available in MATLAB. The study thoroughly explores several nondimensional parameters, including suction/blowing, Darcy number, stretching/shrinking parameter, local pollutant external source parameter, and chemical reaction parameter, visually illustrating their impacts on flow patterns, thermal distribution, and concentration profiles. The scrutiny focuses on key engineering parameters such as skin friction coefficient, heat transfer rate, and mass transfer rate, supported by tabular data that enhances the quantitative evaluation of these parameters. It is found that the velocity of hybrid nanofluid upsurges with the increment in the stretching/shrinking parameter and Darcy number. Also, results obtained reveal that the concentration profiles experience an upward shift with an increase in unsteadiness parameter and local pollutant external source parameter. Moreover, the Sherwood number decreases by 10.65% as the local pollutant external source parameter, ranging from 0.03 to 0.09, is increased.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-024-09752-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09752-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了混合纳米流体在热辐射、化学反应和废物排放浓度存在下在薄片上流动的热液特性,以开发有效的废物处理和污染控制方法。控制质量、动量、能量和浓度守恒的偏微分方程(PDEs)是非线性的,使用相似变换将其转换为常微分方程(ode)。该过程的下一阶段是使用MATLAB中的bvp4c技术求解这些微分方程。该研究深入探讨了吸入/吹气、达西数、拉伸/收缩参数、局部污染物外源参数和化学反应参数等几个无因次参数,直观地说明了它们对流动模式、热分布和浓度分布的影响。审查的重点是关键的工程参数,如表面摩擦系数、传热率和传质率,并由表格数据支持,增强了这些参数的定量评估。结果表明,混合纳米流体的速度随拉伸收缩参数和达西数的增加而增大。结果表明,随着非定常参数和局地污染源参数的增加,浓度曲线呈上升趋势。随着局地污染源外源参数(0.03 ~ 0.09)的增大,舍伍德数减少了10.65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of waste discharge concentration in radiative hybrid nanofluid flow over a stretching/shrinking sheet with chemical reaction

This study examines the hydrothermal characteristics of hybrid nanofluid flow over a sheet in the presence of thermal radiation, chemical reaction, and waste discharge concentration to develop effective waste treatment and pollution control methods. The partial differential equations (PDEs) governing the conservation of mass, momentum, energy, and concentration, which are nonlinear, are transformed into ordinary differential equations (ODEs) using similarity transformations. The next stage in the process is to solve these differential equations using the bvp4c technique available in MATLAB. The study thoroughly explores several nondimensional parameters, including suction/blowing, Darcy number, stretching/shrinking parameter, local pollutant external source parameter, and chemical reaction parameter, visually illustrating their impacts on flow patterns, thermal distribution, and concentration profiles. The scrutiny focuses on key engineering parameters such as skin friction coefficient, heat transfer rate, and mass transfer rate, supported by tabular data that enhances the quantitative evaluation of these parameters. It is found that the velocity of hybrid nanofluid upsurges with the increment in the stretching/shrinking parameter and Darcy number. Also, results obtained reveal that the concentration profiles experience an upward shift with an increase in unsteadiness parameter and local pollutant external source parameter. Moreover, the Sherwood number decreases by 10.65% as the local pollutant external source parameter, ranging from 0.03 to 0.09, is increased.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信