Yusuf Zuntu Abdullahi, Ikram Djebablia, Tiem Leong Yoon and Lim Thong Leng
{"title":"钙原子修饰磷化硼(BP)联苯作为高效储氢材料†","authors":"Yusuf Zuntu Abdullahi, Ikram Djebablia, Tiem Leong Yoon and Lim Thong Leng","doi":"10.1039/D4RA07271E","DOIUrl":null,"url":null,"abstract":"<p >Porous nanosheets have attracted significant attention as viable options for energy storage materials because of their exceptionally large specific surface areas. A recent study (<em>Int. J. Hydrogen Energy</em>, 2024, <strong>66</strong>, 33–39) has demonstrated that Li/Na-metalized inorganic BP-biphenylene (b-B<small><sub>3</sub></small>P<small><sub>3</sub></small>) and graphenylene (g-B<small><sub>6</sub></small>P<small><sub>6</sub></small>) analogues possess suitable functionalities for hydrogen (H<small><sub>2</sub></small>) storage. Herein, we evaluate the H<small><sub>2</sub></small> storage performance of alkaline earth metal (AEM = Be, Mg, Ca)-decorated b-B<small><sub>3</sub></small>P<small><sub>3</sub></small> and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small> structures based on first-principles density functional theory (DFT) calculations. Our investigations revealed that individual Be and Mg atoms are not stable on pure b-B<small><sub>3</sub></small>P<small><sub>3</sub></small> and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small> sheets, and the formation of aggregates is favored due to their low binding energy to these surfaces. However, the binding energy improves for Ca-decorated b-B<small><sub>3</sub></small>P<small><sub>3</sub></small> (b-B<small><sub>3</sub></small>P<small><sub>3</sub></small>(<em>m</em>Ca)) and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small> (g-B<small><sub>6</sub></small>P<small><sub>6</sub></small>(<em>n</em>Ca)) structures, forming stable and uniform <em>m</em>Ca(<em>n</em>Ca) (<em>m</em> and <em>n</em> stand for the numbers of Ca atom) coverages on both sides. Under maximum hydrogenation, the b-B<small><sub>3</sub></small>P<small><sub>3</sub></small>(8Ca) and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small>(16Ca) structures exhibited the ability to adsorb up to 32H<small><sub>2</sub></small> and 48H<small><sub>2</sub></small> molecules with average adsorption energy (<em>E</em><small><sub>a</sub></small>) values of −0.23 eV per H<small><sub>2</sub></small> and −0.25 eV per H<small><sub>2</sub></small>, respectively. Gravimetric H<small><sub>2</sub></small> uptakes of 7.28 wt% and 5.56 wt% were found for b-B<small><sub>3</sub></small>P<small><sub>3</sub></small>(8Ca)@32H<small><sub>2</sub></small> and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small>(16Ca)@48H<small><sub>2</sub></small> systems, exceeding the target of 5.50 wt% set by the US Department of Energy (DOE) to be reached by 2025. Our findings indicate the importance of these b-B<small><sub>3</sub></small>P<small><sub>3</sub></small> and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small> sheets for H<small><sub>2</sub></small> storage technologies.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 53","pages":" 39268-39275"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra07271e?page=search","citationCount":"0","resultStr":"{\"title\":\"Calcium-atom-modified boron phosphide (BP) biphenylene as an efficient hydrogen storage material†\",\"authors\":\"Yusuf Zuntu Abdullahi, Ikram Djebablia, Tiem Leong Yoon and Lim Thong Leng\",\"doi\":\"10.1039/D4RA07271E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Porous nanosheets have attracted significant attention as viable options for energy storage materials because of their exceptionally large specific surface areas. A recent study (<em>Int. J. Hydrogen Energy</em>, 2024, <strong>66</strong>, 33–39) has demonstrated that Li/Na-metalized inorganic BP-biphenylene (b-B<small><sub>3</sub></small>P<small><sub>3</sub></small>) and graphenylene (g-B<small><sub>6</sub></small>P<small><sub>6</sub></small>) analogues possess suitable functionalities for hydrogen (H<small><sub>2</sub></small>) storage. Herein, we evaluate the H<small><sub>2</sub></small> storage performance of alkaline earth metal (AEM = Be, Mg, Ca)-decorated b-B<small><sub>3</sub></small>P<small><sub>3</sub></small> and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small> structures based on first-principles density functional theory (DFT) calculations. Our investigations revealed that individual Be and Mg atoms are not stable on pure b-B<small><sub>3</sub></small>P<small><sub>3</sub></small> and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small> sheets, and the formation of aggregates is favored due to their low binding energy to these surfaces. However, the binding energy improves for Ca-decorated b-B<small><sub>3</sub></small>P<small><sub>3</sub></small> (b-B<small><sub>3</sub></small>P<small><sub>3</sub></small>(<em>m</em>Ca)) and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small> (g-B<small><sub>6</sub></small>P<small><sub>6</sub></small>(<em>n</em>Ca)) structures, forming stable and uniform <em>m</em>Ca(<em>n</em>Ca) (<em>m</em> and <em>n</em> stand for the numbers of Ca atom) coverages on both sides. Under maximum hydrogenation, the b-B<small><sub>3</sub></small>P<small><sub>3</sub></small>(8Ca) and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small>(16Ca) structures exhibited the ability to adsorb up to 32H<small><sub>2</sub></small> and 48H<small><sub>2</sub></small> molecules with average adsorption energy (<em>E</em><small><sub>a</sub></small>) values of −0.23 eV per H<small><sub>2</sub></small> and −0.25 eV per H<small><sub>2</sub></small>, respectively. Gravimetric H<small><sub>2</sub></small> uptakes of 7.28 wt% and 5.56 wt% were found for b-B<small><sub>3</sub></small>P<small><sub>3</sub></small>(8Ca)@32H<small><sub>2</sub></small> and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small>(16Ca)@48H<small><sub>2</sub></small> systems, exceeding the target of 5.50 wt% set by the US Department of Energy (DOE) to be reached by 2025. Our findings indicate the importance of these b-B<small><sub>3</sub></small>P<small><sub>3</sub></small> and g-B<small><sub>6</sub></small>P<small><sub>6</sub></small> sheets for H<small><sub>2</sub></small> storage technologies.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 53\",\"pages\":\" 39268-39275\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra07271e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07271e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07271e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
多孔纳米片由于其特别大的比表面积而成为储能材料的可行选择,引起了人们的极大关注。最近的一项研究(国际)。[j] .氢能,2024,66,33-39)已经证明了Li/ na金属化无机bp -联苯(b-B3P3)和石墨烯(g-B6P6)类似物具有合适的储氢功能。本文基于第一性原理密度泛函理论(DFT)计算,评价了碱土金属(AEM = Be, Mg, Ca)修饰的b-B3P3和g-B6P6结构的储氢性能。我们的研究表明,单独的Be和Mg原子在纯b-B3P3和g-B6P6薄片上不稳定,由于它们与这些表面的低结合能,有利于形成聚集体。而Ca修饰的b-B3P3(b-B3P3(mCa))和g-B6P6(g-B6P6(nCa))结构的结合能有所提高,两侧形成稳定均匀的mCa(nCa) (m和n为Ca原子数)覆盖层。在最大加氢条件下,b-B3P3(8Ca)和g-B6P6(16Ca)结构能够吸附32H2和48H2分子,平均吸附能(Ea)分别为−0.23 eV / H2和−0.25 eV / H2。b-B3P3(8Ca)@32H2和g-B6P6(16Ca)@48H2系统的重量H2吸收率分别为7.28 wt%和5.56 wt%,超过了美国能源部(DOE)设定的到2025年达到5.50 wt%的目标。我们的研究结果表明了这些b-B3P3和g-B6P6薄片对氢气储存技术的重要性。
Calcium-atom-modified boron phosphide (BP) biphenylene as an efficient hydrogen storage material†
Porous nanosheets have attracted significant attention as viable options for energy storage materials because of their exceptionally large specific surface areas. A recent study (Int. J. Hydrogen Energy, 2024, 66, 33–39) has demonstrated that Li/Na-metalized inorganic BP-biphenylene (b-B3P3) and graphenylene (g-B6P6) analogues possess suitable functionalities for hydrogen (H2) storage. Herein, we evaluate the H2 storage performance of alkaline earth metal (AEM = Be, Mg, Ca)-decorated b-B3P3 and g-B6P6 structures based on first-principles density functional theory (DFT) calculations. Our investigations revealed that individual Be and Mg atoms are not stable on pure b-B3P3 and g-B6P6 sheets, and the formation of aggregates is favored due to their low binding energy to these surfaces. However, the binding energy improves for Ca-decorated b-B3P3 (b-B3P3(mCa)) and g-B6P6 (g-B6P6(nCa)) structures, forming stable and uniform mCa(nCa) (m and n stand for the numbers of Ca atom) coverages on both sides. Under maximum hydrogenation, the b-B3P3(8Ca) and g-B6P6(16Ca) structures exhibited the ability to adsorb up to 32H2 and 48H2 molecules with average adsorption energy (Ea) values of −0.23 eV per H2 and −0.25 eV per H2, respectively. Gravimetric H2 uptakes of 7.28 wt% and 5.56 wt% were found for b-B3P3(8Ca)@32H2 and g-B6P6(16Ca)@48H2 systems, exceeding the target of 5.50 wt% set by the US Department of Energy (DOE) to be reached by 2025. Our findings indicate the importance of these b-B3P3 and g-B6P6 sheets for H2 storage technologies.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.