基于最大干扰的传感器网络分布式估计中恶意传感器联合测量与信道设计

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hadi Zayyani;Mohammad Salman;Hasan Abu Hilal
{"title":"基于最大干扰的传感器网络分布式估计中恶意传感器联合测量与信道设计","authors":"Hadi Zayyani;Mohammad Salman;Hasan Abu Hilal","doi":"10.1109/LSENS.2024.3507579","DOIUrl":null,"url":null,"abstract":"Secure distributed estimation algorithms aim to be resilient against adversaries in a network. By deploying a single attacker with sufficiently large attack vectors in the network, the adversary can significantly degrade the performance of the estimator. Large attack vectors enhance the chance of attack detection. This letter aims to optimally design the measurement and channel attack vectors of a single attacker to maximally deviate the performance of the distributed estimation algorithm based on the maximum disturbance. A suboptimal joint measurement and channel attack design are provided using a Lagrange multipliers' method, in which the Lagrange multipliers are arbitrary and not obtained optimally. Subsequently, a suboptimal design for measurement-only and channel-only attacks is presented, with Lagrange multipliers derived mathematically. In fact, the false data injection (FDI) of a sensor has a profound effect on the performance of the distributed estimation in a sensor network. So, the action of even a single malicious sensor with deliberate attack design can degrade the true performance of the entire network. Simulation results demonstrate that these attack designs algorithms are more effective than random attack designs.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 1","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Measurement and Channel Design of a Malicious Sensor in Distributed Estimation Based on Maximum Disturbance in a Sensor Network\",\"authors\":\"Hadi Zayyani;Mohammad Salman;Hasan Abu Hilal\",\"doi\":\"10.1109/LSENS.2024.3507579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Secure distributed estimation algorithms aim to be resilient against adversaries in a network. By deploying a single attacker with sufficiently large attack vectors in the network, the adversary can significantly degrade the performance of the estimator. Large attack vectors enhance the chance of attack detection. This letter aims to optimally design the measurement and channel attack vectors of a single attacker to maximally deviate the performance of the distributed estimation algorithm based on the maximum disturbance. A suboptimal joint measurement and channel attack design are provided using a Lagrange multipliers' method, in which the Lagrange multipliers are arbitrary and not obtained optimally. Subsequently, a suboptimal design for measurement-only and channel-only attacks is presented, with Lagrange multipliers derived mathematically. In fact, the false data injection (FDI) of a sensor has a profound effect on the performance of the distributed estimation in a sensor network. So, the action of even a single malicious sensor with deliberate attack design can degrade the true performance of the entire network. Simulation results demonstrate that these attack designs algorithms are more effective than random attack designs.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10768990/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10768990/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

安全的分布式估计算法旨在对网络中的对手具有弹性。通过在网络中部署具有足够大攻击向量的单个攻击者,攻击者可以显著降低估计器的性能。大的攻击向量增加了攻击检测的机会。本文旨在优化设计单个攻击者的测量和通道攻击向量,以最大程度地偏离基于最大干扰的分布式估计算法的性能。利用拉格朗日乘子方法,提出了一种次优联合测量和信道攻击设计方法,其中拉格朗日乘子是任意的,不能得到最优解。随后,提出了一种针对纯测量攻击和纯信道攻击的次优设计,并推导了拉格朗日乘子的数学表达式。事实上,传感器的虚假数据注入对传感器网络的分布式估计性能有着深远的影响。因此,即使是单个带有故意攻击设计的恶意传感器的行为也会降低整个网络的真实性能。仿真结果表明,这些攻击设计算法比随机攻击设计更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Measurement and Channel Design of a Malicious Sensor in Distributed Estimation Based on Maximum Disturbance in a Sensor Network
Secure distributed estimation algorithms aim to be resilient against adversaries in a network. By deploying a single attacker with sufficiently large attack vectors in the network, the adversary can significantly degrade the performance of the estimator. Large attack vectors enhance the chance of attack detection. This letter aims to optimally design the measurement and channel attack vectors of a single attacker to maximally deviate the performance of the distributed estimation algorithm based on the maximum disturbance. A suboptimal joint measurement and channel attack design are provided using a Lagrange multipliers' method, in which the Lagrange multipliers are arbitrary and not obtained optimally. Subsequently, a suboptimal design for measurement-only and channel-only attacks is presented, with Lagrange multipliers derived mathematically. In fact, the false data injection (FDI) of a sensor has a profound effect on the performance of the distributed estimation in a sensor network. So, the action of even a single malicious sensor with deliberate attack design can degrade the true performance of the entire network. Simulation results demonstrate that these attack designs algorithms are more effective than random attack designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信