基于准牛顿的无逆矩阵WMMSE MISO波束形成算法

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Mingjun Sun;Zeng Li;Shaochuan Wu;Ruofei Ma;Litong Jiang
{"title":"基于准牛顿的无逆矩阵WMMSE MISO波束形成算法","authors":"Mingjun Sun;Zeng Li;Shaochuan Wu;Ruofei Ma;Litong Jiang","doi":"10.1109/LCOMM.2024.3474251","DOIUrl":null,"url":null,"abstract":"This letter propose a quasi-Newton based weighted minimum mean square error (WMMSE) algorithm without matrix inverse to solve the weighted sum rate (WSR) maximization problem in multi-user multi-input single-output (MU-MISO) beamforming. On one hand, the quasi-Newton method can replace the first-order optimal condition to solve the extremum problem of the convex quadratic function, without involving matrix inverse. One the other hand, compared to projected gradient descent (PGD) approach, it can achieve a faster convergence under the guidance of approximate Hessian matrix and avoid performance loss under the condition of high transmit power. Furthermore, a learning strategy is adopted to replace the linear searching process to obtain the optimal step size that satisfies the Wolfe condition. Simulation results validate that the proposed algorithm can achieve the same performance as WMMSE, but with a reduced computation complexity.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 12","pages":"2809-2813"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Matrix-Inverse-Free WMMSE Algorithm to MISO Beamforming Based on Quasi-Newton\",\"authors\":\"Mingjun Sun;Zeng Li;Shaochuan Wu;Ruofei Ma;Litong Jiang\",\"doi\":\"10.1109/LCOMM.2024.3474251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter propose a quasi-Newton based weighted minimum mean square error (WMMSE) algorithm without matrix inverse to solve the weighted sum rate (WSR) maximization problem in multi-user multi-input single-output (MU-MISO) beamforming. On one hand, the quasi-Newton method can replace the first-order optimal condition to solve the extremum problem of the convex quadratic function, without involving matrix inverse. One the other hand, compared to projected gradient descent (PGD) approach, it can achieve a faster convergence under the guidance of approximate Hessian matrix and avoid performance loss under the condition of high transmit power. Furthermore, a learning strategy is adopted to replace the linear searching process to obtain the optimal step size that satisfies the Wolfe condition. Simulation results validate that the proposed algorithm can achieve the same performance as WMMSE, but with a reduced computation complexity.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"28 12\",\"pages\":\"2809-2813\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705312/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10705312/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

针对多用户多输入单输出波束形成中的加权和率最大化问题,提出了一种基于准牛顿的无矩阵逆加权最小均方误差(WMMSE)算法。一方面,拟牛顿法可以代替一阶最优条件求解凸二次函数的极值问题,而不涉及矩阵逆。另一方面,与投影梯度下降(PGD)方法相比,该方法在近似Hessian矩阵的指导下收敛速度更快,避免了高发射功率条件下的性能损失。采用学习策略代替线性搜索过程,得到满足Wolfe条件的最优步长。仿真结果表明,该算法可以达到与WMMSE相同的性能,但降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Matrix-Inverse-Free WMMSE Algorithm to MISO Beamforming Based on Quasi-Newton
This letter propose a quasi-Newton based weighted minimum mean square error (WMMSE) algorithm without matrix inverse to solve the weighted sum rate (WSR) maximization problem in multi-user multi-input single-output (MU-MISO) beamforming. On one hand, the quasi-Newton method can replace the first-order optimal condition to solve the extremum problem of the convex quadratic function, without involving matrix inverse. One the other hand, compared to projected gradient descent (PGD) approach, it can achieve a faster convergence under the guidance of approximate Hessian matrix and avoid performance loss under the condition of high transmit power. Furthermore, a learning strategy is adopted to replace the linear searching process to obtain the optimal step size that satisfies the Wolfe condition. Simulation results validate that the proposed algorithm can achieve the same performance as WMMSE, but with a reduced computation complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信