神经结构搜索的高效评价方法综述

Xiaotian Song;Xiangning Xie;Zeqiong Lv;Gary G. Yen;Weiping Ding;Jiancheng Lv;Yanan Sun
{"title":"神经结构搜索的高效评价方法综述","authors":"Xiaotian Song;Xiangning Xie;Zeqiong Lv;Gary G. Yen;Weiping Ding;Jiancheng Lv;Yanan Sun","doi":"10.1109/TAI.2024.3477457","DOIUrl":null,"url":null,"abstract":"Neural architecture search (NAS) has received increasing attention because of its exceptional merits in automating the design of deep neural network (DNN) architectures. However, the performance evaluation process, as a key part of NAS, often requires training a large number of DNNs. This inevitably makes NAS computationally expensive. In past years, many efficient evaluation methods (EEMs) have been proposed to address this critical issue. In this article, we comprehensively survey these EEMs published up to date, and provide a detailed analysis to motivate the further development of this research direction. Specifically, we divide the existing EEMs into four categories based on the number of DNNs trained for constructing these EEMs. The categorization can reflect the degree of efficiency in principle, which can in turn help quickly grasp the methodological features. In surveying each category, we further discuss the design principles and analyze the strengths and weaknesses to clarify the landscape of existing EEMs, thus making easily understanding the research trends of EEMs. Furthermore, we also discuss the current challenges and issues to identify future research directions in this emerging topic. In summary, this survey provides a convenient overview of EEM for interested users, and they can easily select the proper EEM method for the tasks at hand. In addition, the researchers in the NAS field could continue exploring the future directions suggested in the article.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"5990-6011"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Evaluation Methods for Neural Architecture Search: A Survey\",\"authors\":\"Xiaotian Song;Xiangning Xie;Zeqiong Lv;Gary G. Yen;Weiping Ding;Jiancheng Lv;Yanan Sun\",\"doi\":\"10.1109/TAI.2024.3477457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural architecture search (NAS) has received increasing attention because of its exceptional merits in automating the design of deep neural network (DNN) architectures. However, the performance evaluation process, as a key part of NAS, often requires training a large number of DNNs. This inevitably makes NAS computationally expensive. In past years, many efficient evaluation methods (EEMs) have been proposed to address this critical issue. In this article, we comprehensively survey these EEMs published up to date, and provide a detailed analysis to motivate the further development of this research direction. Specifically, we divide the existing EEMs into four categories based on the number of DNNs trained for constructing these EEMs. The categorization can reflect the degree of efficiency in principle, which can in turn help quickly grasp the methodological features. In surveying each category, we further discuss the design principles and analyze the strengths and weaknesses to clarify the landscape of existing EEMs, thus making easily understanding the research trends of EEMs. Furthermore, we also discuss the current challenges and issues to identify future research directions in this emerging topic. In summary, this survey provides a convenient overview of EEM for interested users, and they can easily select the proper EEM method for the tasks at hand. In addition, the researchers in the NAS field could continue exploring the future directions suggested in the article.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"5 12\",\"pages\":\"5990-6011\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713213/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10713213/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经结构搜索(NAS)因其在深度神经网络(DNN)结构自动化设计方面的独特优势而受到越来越多的关注。然而,作为NAS的关键部分,性能评估过程往往需要训练大量的dnn。这不可避免地使NAS在计算上变得昂贵。在过去的几年里,人们提出了许多有效的评估方法(EEMs)来解决这一关键问题。在本文中,我们对这些最新发表的eem进行了全面的综述,并提供了详细的分析,以激励这一研究方向的进一步发展。具体来说,我们根据为构建这些eem而训练的dnn的数量将现有的eem分为四类。分类在原则上可以反映效率程度,从而有助于快速掌握方法特征。在对每个类别的调查中,我们进一步讨论了设计原则,并分析了优势和劣势,以澄清现有eem的格局,从而易于了解eem的研究趋势。此外,我们还讨论了当前的挑战和问题,以确定这一新兴主题的未来研究方向。总之,这项调查为感兴趣的用户提供了一个方便的EEM概述,他们可以很容易地为手头的任务选择合适的EEM方法。此外,NAS领域的研究人员可以继续探索文章中提出的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Evaluation Methods for Neural Architecture Search: A Survey
Neural architecture search (NAS) has received increasing attention because of its exceptional merits in automating the design of deep neural network (DNN) architectures. However, the performance evaluation process, as a key part of NAS, often requires training a large number of DNNs. This inevitably makes NAS computationally expensive. In past years, many efficient evaluation methods (EEMs) have been proposed to address this critical issue. In this article, we comprehensively survey these EEMs published up to date, and provide a detailed analysis to motivate the further development of this research direction. Specifically, we divide the existing EEMs into four categories based on the number of DNNs trained for constructing these EEMs. The categorization can reflect the degree of efficiency in principle, which can in turn help quickly grasp the methodological features. In surveying each category, we further discuss the design principles and analyze the strengths and weaknesses to clarify the landscape of existing EEMs, thus making easily understanding the research trends of EEMs. Furthermore, we also discuss the current challenges and issues to identify future research directions in this emerging topic. In summary, this survey provides a convenient overview of EEM for interested users, and they can easily select the proper EEM method for the tasks at hand. In addition, the researchers in the NAS field could continue exploring the future directions suggested in the article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信