标签有效时间序列表示学习:综述

Emadeldeen Eldele;Mohamed Ragab;Zhenghua Chen;Min Wu;Chee-Keong Kwoh;Xiaoli Li
{"title":"标签有效时间序列表示学习:综述","authors":"Emadeldeen Eldele;Mohamed Ragab;Zhenghua Chen;Min Wu;Chee-Keong Kwoh;Xiaoli Li","doi":"10.1109/TAI.2024.3430236","DOIUrl":null,"url":null,"abstract":"Label-efficient time series representation learning, which aims to learn effective representations with limited labeled data, is crucial for deploying deep learning models in real-world applications. To address the scarcity of labeled time series data, various strategies, e.g., transfer learning, self-supervised learning, and semisupervised learning, have been developed. In this survey, we introduce a novel taxonomy for the first time, categorizing existing approaches as in-domain or cross domain based on their reliance on external data sources or not. Furthermore, we present a review of the recent advances in each strategy, conclude the limitations of current methodologies, and suggest future research directions that promise further improvements in the field.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6027-6042"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-Efficient Time Series Representation Learning: A Review\",\"authors\":\"Emadeldeen Eldele;Mohamed Ragab;Zhenghua Chen;Min Wu;Chee-Keong Kwoh;Xiaoli Li\",\"doi\":\"10.1109/TAI.2024.3430236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Label-efficient time series representation learning, which aims to learn effective representations with limited labeled data, is crucial for deploying deep learning models in real-world applications. To address the scarcity of labeled time series data, various strategies, e.g., transfer learning, self-supervised learning, and semisupervised learning, have been developed. In this survey, we introduce a novel taxonomy for the first time, categorizing existing approaches as in-domain or cross domain based on their reliance on external data sources or not. Furthermore, we present a review of the recent advances in each strategy, conclude the limitations of current methodologies, and suggest future research directions that promise further improvements in the field.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"5 12\",\"pages\":\"6027-6042\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10601520/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10601520/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

标签高效时间序列表示学习旨在用有限的标记数据学习有效的表示,这对于在实际应用中部署深度学习模型至关重要。为了解决标记时间序列数据的稀缺性,已经开发了各种策略,例如迁移学习,自监督学习和半监督学习。在这项调查中,我们首次引入了一种新的分类法,根据现有方法对外部数据源的依赖程度将其分为域内方法和跨域方法。此外,我们对每种策略的最新进展进行了回顾,总结了当前方法的局限性,并提出了未来研究方向,有望在该领域进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Label-Efficient Time Series Representation Learning: A Review
Label-efficient time series representation learning, which aims to learn effective representations with limited labeled data, is crucial for deploying deep learning models in real-world applications. To address the scarcity of labeled time series data, various strategies, e.g., transfer learning, self-supervised learning, and semisupervised learning, have been developed. In this survey, we introduce a novel taxonomy for the first time, categorizing existing approaches as in-domain or cross domain based on their reliance on external data sources or not. Furthermore, we present a review of the recent advances in each strategy, conclude the limitations of current methodologies, and suggest future research directions that promise further improvements in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信