扩展信号长度的自动调制分类精度和效率的mamc优化

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Yezhuo Zhang;Zinan Zhou;Yichao Cao;Guangyu Li;Xuanpeng Li
{"title":"扩展信号长度的自动调制分类精度和效率的mamc优化","authors":"Yezhuo Zhang;Zinan Zhou;Yichao Cao;Guangyu Li;Xuanpeng Li","doi":"10.1109/LCOMM.2024.3474519","DOIUrl":null,"url":null,"abstract":"In Automatic Modulation Classification (AMC), extended signal lengths offer a bounty of information, yet impede the model’s adaptability, introduce more noise interference, extend the training and inference time, and increase memory usage. To bridge the gap between these requirements, we propose a novel AMC framework, designated as the Mamba-based Automatic Modulation Classification (MAMC), which addresses the accuracy and efficiency requirements for long-sequence AMC. Specifically, we introduce the Selective State Space Model (Mamba), which enhances the model’s capabilities in long-term memory and information selection, and reduces computational complexity and spatial overhead. We further design a denoising unit to filter out effective semantic information to improve accuracy. Rigorous experimental evaluations on the publicly available dataset RML2016.10 and TorchSig affirm that MAMC delivers superior recognition accuracy while necessitating minimal computational time and memory occupancy. Codes are available on \n<uri>https://github.com/ZhangYezhuo/MAMC</uri>\n.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 12","pages":"2864-2868"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MAMC—Optimal on Accuracy and Efficiency for Automatic Modulation Classification With Extended Signal Length\",\"authors\":\"Yezhuo Zhang;Zinan Zhou;Yichao Cao;Guangyu Li;Xuanpeng Li\",\"doi\":\"10.1109/LCOMM.2024.3474519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Automatic Modulation Classification (AMC), extended signal lengths offer a bounty of information, yet impede the model’s adaptability, introduce more noise interference, extend the training and inference time, and increase memory usage. To bridge the gap between these requirements, we propose a novel AMC framework, designated as the Mamba-based Automatic Modulation Classification (MAMC), which addresses the accuracy and efficiency requirements for long-sequence AMC. Specifically, we introduce the Selective State Space Model (Mamba), which enhances the model’s capabilities in long-term memory and information selection, and reduces computational complexity and spatial overhead. We further design a denoising unit to filter out effective semantic information to improve accuracy. Rigorous experimental evaluations on the publicly available dataset RML2016.10 and TorchSig affirm that MAMC delivers superior recognition accuracy while necessitating minimal computational time and memory occupancy. Codes are available on \\n<uri>https://github.com/ZhangYezhuo/MAMC</uri>\\n.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"28 12\",\"pages\":\"2864-2868\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705364/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10705364/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在自动调制分类(AMC)中,延长的信号长度提供了丰富的信息,但阻碍了模型的适应性,引入了更多的噪声干扰,延长了训练和推理时间,增加了内存的使用。为了弥补这些需求之间的差距,我们提出了一种新的AMC框架,称为基于mamba的自动调制分类(MAMC),它解决了长序列AMC的精度和效率要求。具体来说,我们引入了选择性状态空间模型(Mamba),增强了模型在长期记忆和信息选择方面的能力,降低了计算复杂度和空间开销。我们进一步设计了一个去噪单元来过滤掉有效的语义信息,以提高准确率。在公开可用的数据集RML2016.10和TorchSig上进行的严格实验评估证实,MAMC提供了卓越的识别准确性,同时需要最小的计算时间和内存占用。代码可在https://github.com/ZhangYezhuo/MAMC上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MAMC—Optimal on Accuracy and Efficiency for Automatic Modulation Classification With Extended Signal Length
In Automatic Modulation Classification (AMC), extended signal lengths offer a bounty of information, yet impede the model’s adaptability, introduce more noise interference, extend the training and inference time, and increase memory usage. To bridge the gap between these requirements, we propose a novel AMC framework, designated as the Mamba-based Automatic Modulation Classification (MAMC), which addresses the accuracy and efficiency requirements for long-sequence AMC. Specifically, we introduce the Selective State Space Model (Mamba), which enhances the model’s capabilities in long-term memory and information selection, and reduces computational complexity and spatial overhead. We further design a denoising unit to filter out effective semantic information to improve accuracy. Rigorous experimental evaluations on the publicly available dataset RML2016.10 and TorchSig affirm that MAMC delivers superior recognition accuracy while necessitating minimal computational time and memory occupancy. Codes are available on https://github.com/ZhangYezhuo/MAMC .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信