界面对准和高导电性1T-MoS2@Ti3C2Tx用于坚固可变形超级电容器的异质结构非织造布

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Siyuan Ye, Yongzhe Zhang, Chengzhi An, Shuangfei Xiang, Guan Wu
{"title":"界面对准和高导电性1T-MoS2@Ti3C2Tx用于坚固可变形超级电容器的异质结构非织造布","authors":"Siyuan Ye,&nbsp;Yongzhe Zhang,&nbsp;Chengzhi An,&nbsp;Shuangfei Xiang,&nbsp;Guan Wu","doi":"10.1002/adfm.202419779","DOIUrl":null,"url":null,"abstract":"<p>With the urgent demand for wearable electronics and smart textiles in modern society, fabric-based supercapacitors (FSCs) have attracted increasing attention due to their easy wearable integration, high power density, and long-term stability. However, the low energy density and deformable capability of energy supply cause the limitations of actual applications. Here, a 1T-MoS<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> heterostructure nonwoven fabric (NWF) with high interfacial adhesion, electrical conductivity, and mechanical deformability is developed, which is of great significance for the unitization as an advanced FSCs electrode. Owing to the designed heterostructure with aligned active interface, high conductive network, and in situ interfacial coupling, the 1T-MoS<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> NWF exhibits low ion adsorption barrier, fast ion diffusion kinetics, and accelerated electron transport, resulting in large capacitance (425 F g<sup>−1</sup>) and high cycling stability (20 000 cycles) in 1 <span>m</span> H<sub>2</sub>SO<sub>4</sub> electrolyte. Additionally, the corresponding solid-state asymmetric deformable supercapacitors (D-SCs) provide a high energy density of 119.3 µWh cm<sup>−2</sup> at a power density of 800.8 µW cm<sup>−2</sup>, realizing the practical applications for powering electroluminescent device, 2-D code, and sound-controlled electronic fan. More importantly, the D-SCs exhibit robust deformable power-supply capability, maintaining 82.1%, 84.6%, and 89.9% capacity retentions after 2000 cycles of folding, twisting, and bending conditions, respectively.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 15","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial-Aligned and High Conductive 1T-MoS2@Ti3C2Tx Heterostructure Nonwoven Fabric for Robust Deformable Supercapacitors\",\"authors\":\"Siyuan Ye,&nbsp;Yongzhe Zhang,&nbsp;Chengzhi An,&nbsp;Shuangfei Xiang,&nbsp;Guan Wu\",\"doi\":\"10.1002/adfm.202419779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the urgent demand for wearable electronics and smart textiles in modern society, fabric-based supercapacitors (FSCs) have attracted increasing attention due to their easy wearable integration, high power density, and long-term stability. However, the low energy density and deformable capability of energy supply cause the limitations of actual applications. Here, a 1T-MoS<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> heterostructure nonwoven fabric (NWF) with high interfacial adhesion, electrical conductivity, and mechanical deformability is developed, which is of great significance for the unitization as an advanced FSCs electrode. Owing to the designed heterostructure with aligned active interface, high conductive network, and in situ interfacial coupling, the 1T-MoS<sub>2</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> NWF exhibits low ion adsorption barrier, fast ion diffusion kinetics, and accelerated electron transport, resulting in large capacitance (425 F g<sup>−1</sup>) and high cycling stability (20 000 cycles) in 1 <span>m</span> H<sub>2</sub>SO<sub>4</sub> electrolyte. Additionally, the corresponding solid-state asymmetric deformable supercapacitors (D-SCs) provide a high energy density of 119.3 µWh cm<sup>−2</sup> at a power density of 800.8 µW cm<sup>−2</sup>, realizing the practical applications for powering electroluminescent device, 2-D code, and sound-controlled electronic fan. More importantly, the D-SCs exhibit robust deformable power-supply capability, maintaining 82.1%, 84.6%, and 89.9% capacity retentions after 2000 cycles of folding, twisting, and bending conditions, respectively.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 15\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202419779\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202419779","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着现代社会对可穿戴电子产品和智能纺织品的迫切需求,基于织物的超级电容器(FSCs)因其易于穿戴集成、高功率密度和长期稳定性而受到越来越多的关注。然而,能量供应的低能量密度和可变形性限制了其实际应用。本文研制了一种具有高界面附着力、高导电性、高机械变形能力的1T-MoS2@Ti3C2Tx异质结构非织造布(NWF),这对于作为一种先进的FSCs电极的统一化具有重要意义。由于设计了具有排列的活性界面、高导电性网络和原位界面耦合的异构结构,1T-MoS2@Ti3C2Tx NWF具有低离子吸附势垒、快速离子扩散动力学和加速电子传递的特性,从而在1 m H2SO4电解质中具有大电容(425 F g−1)和高循环稳定性(20,000次循环)。此外,相应的固态非对称变形超级电容器(D-SCs)在800.8µW cm−2的功率密度下提供了119.3µWh cm−2的高能量密度,实现了电致发光器件、二维编码和声控电子风扇的实际应用。更重要的是,D-SCs表现出强大的可变形供电能力,在2000次折叠、扭曲和弯曲条件下分别保持82.1%、84.6%和89.9%的容量保留率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacial-Aligned and High Conductive 1T-MoS2@Ti3C2Tx Heterostructure Nonwoven Fabric for Robust Deformable Supercapacitors

Interfacial-Aligned and High Conductive 1T-MoS2@Ti3C2Tx Heterostructure Nonwoven Fabric for Robust Deformable Supercapacitors

Interfacial-Aligned and High Conductive 1T-MoS2@Ti3C2Tx Heterostructure Nonwoven Fabric for Robust Deformable Supercapacitors

With the urgent demand for wearable electronics and smart textiles in modern society, fabric-based supercapacitors (FSCs) have attracted increasing attention due to their easy wearable integration, high power density, and long-term stability. However, the low energy density and deformable capability of energy supply cause the limitations of actual applications. Here, a 1T-MoS2@Ti3C2Tx heterostructure nonwoven fabric (NWF) with high interfacial adhesion, electrical conductivity, and mechanical deformability is developed, which is of great significance for the unitization as an advanced FSCs electrode. Owing to the designed heterostructure with aligned active interface, high conductive network, and in situ interfacial coupling, the 1T-MoS2@Ti3C2Tx NWF exhibits low ion adsorption barrier, fast ion diffusion kinetics, and accelerated electron transport, resulting in large capacitance (425 F g−1) and high cycling stability (20 000 cycles) in 1 m H2SO4 electrolyte. Additionally, the corresponding solid-state asymmetric deformable supercapacitors (D-SCs) provide a high energy density of 119.3 µWh cm−2 at a power density of 800.8 µW cm−2, realizing the practical applications for powering electroluminescent device, 2-D code, and sound-controlled electronic fan. More importantly, the D-SCs exhibit robust deformable power-supply capability, maintaining 82.1%, 84.6%, and 89.9% capacity retentions after 2000 cycles of folding, twisting, and bending conditions, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信