二维双配体增强铁磁性Janus铬的室温拓扑自旋织构

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanzhe Zhao, He Huang, Zeyu Zhang, Jiapeng Zhao, Liming Wang, Guanxiong Qiao, Yanfei Wu, Jingyan Zhang, Xinqi Zheng, Shiming Zhou, Shouguo Wang
{"title":"二维双配体增强铁磁性Janus铬的室温拓扑自旋织构","authors":"Yanzhe Zhao,&nbsp;He Huang,&nbsp;Zeyu Zhang,&nbsp;Jiapeng Zhao,&nbsp;Liming Wang,&nbsp;Guanxiong Qiao,&nbsp;Yanfei Wu,&nbsp;Jingyan Zhang,&nbsp;Xinqi Zheng,&nbsp;Shiming Zhou,&nbsp;Shouguo Wang","doi":"10.1002/adfm.202415216","DOIUrl":null,"url":null,"abstract":"<p>Strong Dzyaloshinskii–Moriya interaction (DMI) and topological spin textures in two-dimensional (2D) magnetic materials hold great potential for novel spin-based information storage and processing. The current research efforts on topological magnetism are highly limited by insufficient magnetic strength, resulting in a narrow temperature-external magnetic field (T-B) phase diagram window. In this study, 2D Janus Cr<sub>2</sub>X<sub>3</sub>Y<sub>3</sub> (X = Cl, Br, I; Y = S, Se, Te) monolayers are investigated by employing first-principles calculations and atomic spin simulations, demonstrating desirable characteristics such as high Curie temperatures, significant DMI, and chiral spin textures benefited from the ligand substitution. Notably, stable field-free room-temperature magnetic skyrmions are observed in the Cr<sub>2</sub>Br<sub>3</sub>S<sub>3</sub> monolayer and can persist under long-range magnetic and temperature fields. Additionally, meron chains and skyrmion chains are preserved in the Cr<sub>2</sub>I<sub>3</sub>S<sub>3</sub> monolayer under appropriate magnetic field and temperature. Based on the tight-binding approximation, a ligand-resolved six-electron model is developed to distinguish superexchange interactions through X- and Y-ligand hopping channels. This model elucidates the interplay between electronegativity and orbital degeneracy, shedding light on their influence on magnetic strength. This discovery highlights and expands the potential of ligand substitution for achieving high-temperature topological magnetism in 2D magnetic materials.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 7","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room Temperature Topological Spin Textures in 2D Janus Chromium Chalcohalides with Dual Ligand Enhanced Ferromagnetism\",\"authors\":\"Yanzhe Zhao,&nbsp;He Huang,&nbsp;Zeyu Zhang,&nbsp;Jiapeng Zhao,&nbsp;Liming Wang,&nbsp;Guanxiong Qiao,&nbsp;Yanfei Wu,&nbsp;Jingyan Zhang,&nbsp;Xinqi Zheng,&nbsp;Shiming Zhou,&nbsp;Shouguo Wang\",\"doi\":\"10.1002/adfm.202415216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Strong Dzyaloshinskii–Moriya interaction (DMI) and topological spin textures in two-dimensional (2D) magnetic materials hold great potential for novel spin-based information storage and processing. The current research efforts on topological magnetism are highly limited by insufficient magnetic strength, resulting in a narrow temperature-external magnetic field (T-B) phase diagram window. In this study, 2D Janus Cr<sub>2</sub>X<sub>3</sub>Y<sub>3</sub> (X = Cl, Br, I; Y = S, Se, Te) monolayers are investigated by employing first-principles calculations and atomic spin simulations, demonstrating desirable characteristics such as high Curie temperatures, significant DMI, and chiral spin textures benefited from the ligand substitution. Notably, stable field-free room-temperature magnetic skyrmions are observed in the Cr<sub>2</sub>Br<sub>3</sub>S<sub>3</sub> monolayer and can persist under long-range magnetic and temperature fields. Additionally, meron chains and skyrmion chains are preserved in the Cr<sub>2</sub>I<sub>3</sub>S<sub>3</sub> monolayer under appropriate magnetic field and temperature. Based on the tight-binding approximation, a ligand-resolved six-electron model is developed to distinguish superexchange interactions through X- and Y-ligand hopping channels. This model elucidates the interplay between electronegativity and orbital degeneracy, shedding light on their influence on magnetic strength. This discovery highlights and expands the potential of ligand substitution for achieving high-temperature topological magnetism in 2D magnetic materials.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 7\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202415216\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202415216","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维磁性材料中的强Dzyaloshinskii-Moriya相互作用(DMI)和拓扑自旋织构在新型自旋信息存储和处理方面具有巨大的潜力。目前拓扑磁学的研究受到磁场强度不足的严重限制,导致温度-外磁场(T-B)相图窗口狭窄。在本研究中,2D Janus Cr2X3Y3 (X = Cl, Br, I;采用第一性原理计算和原子自旋模拟对Y = S, Se, Te)单层进行了研究,证明了高居里温度、显著的DMI和受益于配体取代的手性自旋结构等理想特性。值得注意的是,在Cr2Br3S3单分子层中观察到稳定的无场室温磁隙,并能在长时间的磁场和温度场下持续存在。此外,在适当的磁场和温度下,Cr2I3S3单层中保留了介子链和斯基子链。基于紧密结合近似,建立了一个配体分辨的六电子模型来区分通过X和y配体跳变通道的超交换相互作用。这个模型阐明了电负性和轨道简并之间的相互作用,揭示了它们对磁场强度的影响。这一发现突出并扩展了配体取代在二维磁性材料中实现高温拓扑磁性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Room Temperature Topological Spin Textures in 2D Janus Chromium Chalcohalides with Dual Ligand Enhanced Ferromagnetism

Room Temperature Topological Spin Textures in 2D Janus Chromium Chalcohalides with Dual Ligand Enhanced Ferromagnetism

Room Temperature Topological Spin Textures in 2D Janus Chromium Chalcohalides with Dual Ligand Enhanced Ferromagnetism

Strong Dzyaloshinskii–Moriya interaction (DMI) and topological spin textures in two-dimensional (2D) magnetic materials hold great potential for novel spin-based information storage and processing. The current research efforts on topological magnetism are highly limited by insufficient magnetic strength, resulting in a narrow temperature-external magnetic field (T-B) phase diagram window. In this study, 2D Janus Cr2X3Y3 (X = Cl, Br, I; Y = S, Se, Te) monolayers are investigated by employing first-principles calculations and atomic spin simulations, demonstrating desirable characteristics such as high Curie temperatures, significant DMI, and chiral spin textures benefited from the ligand substitution. Notably, stable field-free room-temperature magnetic skyrmions are observed in the Cr2Br3S3 monolayer and can persist under long-range magnetic and temperature fields. Additionally, meron chains and skyrmion chains are preserved in the Cr2I3S3 monolayer under appropriate magnetic field and temperature. Based on the tight-binding approximation, a ligand-resolved six-electron model is developed to distinguish superexchange interactions through X- and Y-ligand hopping channels. This model elucidates the interplay between electronegativity and orbital degeneracy, shedding light on their influence on magnetic strength. This discovery highlights and expands the potential of ligand substitution for achieving high-temperature topological magnetism in 2D magnetic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信