Alexander F Jercher, José D Simão and Sebastian Steinhaus
{"title":"三维洛伦兹自旋泡沫中余弦问题的部分不存在","authors":"Alexander F Jercher, José D Simão and Sebastian Steinhaus","doi":"10.1088/1361-6382/ad9700","DOIUrl":null,"url":null,"abstract":"We study the semi-classical limit of the recently proposed coherent spin foam model for (2+1) Lorentzian quantum gravity. Specifically, we analyze the gluing equations derived from the stationary phase approximation of the vertex amplitude. Typically these exhibit two solutions yielding a cosine of the Regge action. However, by inspection of the algebraic equations as well as their geometrical realization, we show in this note that the behavior is more nuanced: when all triangles are either spacelike or timelike, two solutions exist. In any other case, only a single solution is obtained, thus yielding a single Regge exponential.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"29 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial absence of cosine problem in 3D Lorentzian spin foams\",\"authors\":\"Alexander F Jercher, José D Simão and Sebastian Steinhaus\",\"doi\":\"10.1088/1361-6382/ad9700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the semi-classical limit of the recently proposed coherent spin foam model for (2+1) Lorentzian quantum gravity. Specifically, we analyze the gluing equations derived from the stationary phase approximation of the vertex amplitude. Typically these exhibit two solutions yielding a cosine of the Regge action. However, by inspection of the algebraic equations as well as their geometrical realization, we show in this note that the behavior is more nuanced: when all triangles are either spacelike or timelike, two solutions exist. In any other case, only a single solution is obtained, thus yielding a single Regge exponential.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/ad9700\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad9700","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Partial absence of cosine problem in 3D Lorentzian spin foams
We study the semi-classical limit of the recently proposed coherent spin foam model for (2+1) Lorentzian quantum gravity. Specifically, we analyze the gluing equations derived from the stationary phase approximation of the vertex amplitude. Typically these exhibit two solutions yielding a cosine of the Regge action. However, by inspection of the algebraic equations as well as their geometrical realization, we show in this note that the behavior is more nuanced: when all triangles are either spacelike or timelike, two solutions exist. In any other case, only a single solution is obtained, thus yielding a single Regge exponential.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.