镀铂蓝宝石衬底上0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3薄膜的高能量存储密度和效率

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Sabi William Konsago, Katarina Žiberna, Aleksander Matavž, Barnik Mandal, Sebastjan Glinšek, Geoff L. Brennecka, Hana Uršič and Barbara Malič
{"title":"镀铂蓝宝石衬底上0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3薄膜的高能量存储密度和效率","authors":"Sabi William Konsago, Katarina Žiberna, Aleksander Matavž, Barnik Mandal, Sebastjan Glinšek, Geoff L. Brennecka, Hana Uršič and Barbara Malič","doi":"10.1039/D4TA05675B","DOIUrl":null,"url":null,"abstract":"<p >Manganese-doped 0.5Ba(Zr<small><sub>0.2</sub></small>Ti<small><sub>0.8</sub></small>)O<small><sub>3</sub></small>–0.5(Ba<small><sub>0.7</sub></small>Ca<small><sub>0.3</sub></small>)TiO<small><sub>3</sub></small> (BZT–BCT) ferroelectric thin films deposited on platinized sapphire substrates by chemical solution deposition and multistep-annealed at 850 °C, are investigated. The 100 nm and 340 nm thick films are crack-free and have columnar microstructures with average lateral grain sizes of 58 nm and 92 nm, respectively. The 340 nm thick films exhibit a relative permittivity of about 820 at 1 kHz and room temperature, about 60% higher than the thinner films, which is attributed to the dielectric grain size effect. The thinner films exhibit a larger coercive field and remanent polarization of about 110 kV cm<small><sup>−1</sup></small> and 6 μC cm<small><sup>−2</sup></small> respectively, at 1 MV cm<small><sup>−1</sup></small> compared to 45 kV cm<small><sup>−1</sup></small> and 4 μC cm<small><sup>−2</sup></small> for the thicker films. The 340 nm thick films exhibit a maximum polarization of about 47 μC cm<small><sup>−2</sup></small> at 3.5 MV cm<small><sup>−1</sup></small> and slim polarization loops, resulting in high energy storage properties with 46 J cm<small><sup>−3</sup></small> of recoverable energy storage density and 89% energy storage efficiency.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 4","pages":" 2911-2919"},"PeriodicalIF":9.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta05675b?page=search","citationCount":"0","resultStr":"{\"title\":\"High energy storage density and efficiency of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 thin films on platinized sapphire substrates\",\"authors\":\"Sabi William Konsago, Katarina Žiberna, Aleksander Matavž, Barnik Mandal, Sebastjan Glinšek, Geoff L. Brennecka, Hana Uršič and Barbara Malič\",\"doi\":\"10.1039/D4TA05675B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Manganese-doped 0.5Ba(Zr<small><sub>0.2</sub></small>Ti<small><sub>0.8</sub></small>)O<small><sub>3</sub></small>–0.5(Ba<small><sub>0.7</sub></small>Ca<small><sub>0.3</sub></small>)TiO<small><sub>3</sub></small> (BZT–BCT) ferroelectric thin films deposited on platinized sapphire substrates by chemical solution deposition and multistep-annealed at 850 °C, are investigated. The 100 nm and 340 nm thick films are crack-free and have columnar microstructures with average lateral grain sizes of 58 nm and 92 nm, respectively. The 340 nm thick films exhibit a relative permittivity of about 820 at 1 kHz and room temperature, about 60% higher than the thinner films, which is attributed to the dielectric grain size effect. The thinner films exhibit a larger coercive field and remanent polarization of about 110 kV cm<small><sup>−1</sup></small> and 6 μC cm<small><sup>−2</sup></small> respectively, at 1 MV cm<small><sup>−1</sup></small> compared to 45 kV cm<small><sup>−1</sup></small> and 4 μC cm<small><sup>−2</sup></small> for the thicker films. The 340 nm thick films exhibit a maximum polarization of about 47 μC cm<small><sup>−2</sup></small> at 3.5 MV cm<small><sup>−1</sup></small> and slim polarization loops, resulting in high energy storage properties with 46 J cm<small><sup>−3</sup></small> of recoverable energy storage density and 89% energy storage efficiency.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 4\",\"pages\":\" 2911-2919\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta05675b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta05675b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta05675b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了化学溶液沉积法在镀铂蓝宝石衬底上沉积掺杂锰的0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT)铁电薄膜,并在850℃下进行了多步退火。厚度为100 nm和340 nm的薄膜无裂纹,具有柱状微观结构,平均横向晶粒尺寸分别为58 nm和92 nm。在1 kHz和室温下,340 nm厚薄膜的相对介电常数约为820,比较薄薄膜高约60%,这归因于介电晶粒尺寸效应。在1 MV∙cm-1时,较薄薄膜的矫顽力场和剩余极化分别为110 kV∙cm-1和6 μC∙cm-2,而较厚薄膜的矫顽力场和剩余极化分别为45 kV∙cm-1和4 μC∙cm-2。340 nm厚膜在3.5 MV∙cm-1下的最大极化约为47 μC∙cm-2,极化环较细,具有较高的储能性能,可回收储能密度为46 J∙cm-3,储能效率为89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High energy storage density and efficiency of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 thin films on platinized sapphire substrates

High energy storage density and efficiency of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 thin films on platinized sapphire substrates

Manganese-doped 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BZT–BCT) ferroelectric thin films deposited on platinized sapphire substrates by chemical solution deposition and multistep-annealed at 850 °C, are investigated. The 100 nm and 340 nm thick films are crack-free and have columnar microstructures with average lateral grain sizes of 58 nm and 92 nm, respectively. The 340 nm thick films exhibit a relative permittivity of about 820 at 1 kHz and room temperature, about 60% higher than the thinner films, which is attributed to the dielectric grain size effect. The thinner films exhibit a larger coercive field and remanent polarization of about 110 kV cm−1 and 6 μC cm−2 respectively, at 1 MV cm−1 compared to 45 kV cm−1 and 4 μC cm−2 for the thicker films. The 340 nm thick films exhibit a maximum polarization of about 47 μC cm−2 at 3.5 MV cm−1 and slim polarization loops, resulting in high energy storage properties with 46 J cm−3 of recoverable energy storage density and 89% energy storage efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信