混合二维硫代银苯硫族化合物(AgE1-xExPh);E = S, Se, Te)

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-12 DOI:10.1021/acsnano.4c15118
Woo Seok Lee, Yeongsu Cho, Watcharaphol Paritmongkol, Tomoaki Sakurada, Seung Kyun Ha, Heather J. Kulik, William A. Tisdale
{"title":"混合二维硫代银苯硫族化合物(AgE1-xExPh);E = S, Se, Te)","authors":"Woo Seok Lee, Yeongsu Cho, Watcharaphol Paritmongkol, Tomoaki Sakurada, Seung Kyun Ha, Heather J. Kulik, William A. Tisdale","doi":"10.1021/acsnano.4c15118","DOIUrl":null,"url":null,"abstract":"Alloying is a powerful strategy for tuning the electronic band structure and optical properties of semiconductors. Here, we investigate the thermodynamic stability and excitonic properties of mixed-chalcogen alloys of two-dimensional (2D) hybrid organic–inorganic silver phenylchalcogenides (AgEPh; E = S, Se, Te). Using a variety of structural and optical characterization techniques, we demonstrate that the AgSePh-AgTePh system forms homogeneous alloys (AgSe<sub>1–<i>x</i></sub>Te<sub><i>x</i></sub>Ph, 0 ≤ <i>x</i> ≤ 1) across all compositions, whereas the AgSPh-AgSePh and AgSPh-AgTePh systems exhibit distinct miscibility gaps. Density functional theory calculations reveal that chalcogen mixing is energetically unfavorable in all cases but comparable in magnitude to the ideal entropy of mixing at room temperature. Because AgSePh and AgTePh have the same crystal structure (which is different from AgSPh), alloying is predicted to be thermodynamically preferred over phase separation in the case of AgSePh-AgTePh, whereas phase separation is predicted to be more favorable than alloying for both the AgSPh-AgSePh and AgSPh-AgTePh systems, in agreement with experimental observations. Homogeneous AgSe<sub>1–<i>x</i></sub>Te<sub><i>x</i></sub>Ph alloys exhibit continuously tunable excitonic absorption resonances in the ultraviolet–visible range, while the emission spectrum reveals competition between exciton delocalization (characteristic of AgSePh) and localization behavior (characteristic of AgTePh). Overall, these observations provide insight into the thermodynamics of 2D silver phenylchalcogenides and the effect of lattice composition on electron–phonon interactions in 2D hybrid organic–inorganic semiconductors.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"73 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed-Chalcogen 2D Silver Phenylchalcogenides (AgE1–xExPh; E = S, Se, Te)\",\"authors\":\"Woo Seok Lee, Yeongsu Cho, Watcharaphol Paritmongkol, Tomoaki Sakurada, Seung Kyun Ha, Heather J. Kulik, William A. Tisdale\",\"doi\":\"10.1021/acsnano.4c15118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alloying is a powerful strategy for tuning the electronic band structure and optical properties of semiconductors. Here, we investigate the thermodynamic stability and excitonic properties of mixed-chalcogen alloys of two-dimensional (2D) hybrid organic–inorganic silver phenylchalcogenides (AgEPh; E = S, Se, Te). Using a variety of structural and optical characterization techniques, we demonstrate that the AgSePh-AgTePh system forms homogeneous alloys (AgSe<sub>1–<i>x</i></sub>Te<sub><i>x</i></sub>Ph, 0 ≤ <i>x</i> ≤ 1) across all compositions, whereas the AgSPh-AgSePh and AgSPh-AgTePh systems exhibit distinct miscibility gaps. Density functional theory calculations reveal that chalcogen mixing is energetically unfavorable in all cases but comparable in magnitude to the ideal entropy of mixing at room temperature. Because AgSePh and AgTePh have the same crystal structure (which is different from AgSPh), alloying is predicted to be thermodynamically preferred over phase separation in the case of AgSePh-AgTePh, whereas phase separation is predicted to be more favorable than alloying for both the AgSPh-AgSePh and AgSPh-AgTePh systems, in agreement with experimental observations. Homogeneous AgSe<sub>1–<i>x</i></sub>Te<sub><i>x</i></sub>Ph alloys exhibit continuously tunable excitonic absorption resonances in the ultraviolet–visible range, while the emission spectrum reveals competition between exciton delocalization (characteristic of AgSePh) and localization behavior (characteristic of AgTePh). Overall, these observations provide insight into the thermodynamics of 2D silver phenylchalcogenides and the effect of lattice composition on electron–phonon interactions in 2D hybrid organic–inorganic semiconductors.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c15118\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15118","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合金化是调整半导体电子能带结构和光学特性的一种有效策略。本文研究了二维(2D)杂化有机-无机苯基硫属银(AgEPh;E = S, Se, Te)。利用各种结构和光学表征技术,我们证明agseh - agteph体系在所有成分中形成均匀的合金(AgSe1-xTexPh, 0≤x≤1),而AgSPh-AgSePh和AgSPh-AgTePh体系表现出明显的混相间隙。密度泛函理论计算表明,在所有情况下,碳混合在能量上都是不利的,但在量级上与室温下的理想混合熵相当。由于AgSePh和AgTePh具有相同的晶体结构(与AgSPh不同),因此在AgSePh-AgTePh的情况下,预测合金比相分离在热力学上更有利,而在AgSPh-AgSePh和AgSPh-AgTePh体系中,相分离被预测比合金更有利,这与实验观察一致。均匀的AgSe1-xTexPh合金在紫外-可见光范围内表现出连续可调的激子吸收共振,而发射光谱显示了激子离域(AgSePh的特征)和局部化行为(AgTePh的特征)之间的竞争。总的来说,这些观察提供了对二维苯基硫族银的热力学和晶格组成对二维杂化有机-无机半导体中电子-声子相互作用的影响的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mixed-Chalcogen 2D Silver Phenylchalcogenides (AgE1–xExPh; E = S, Se, Te)

Mixed-Chalcogen 2D Silver Phenylchalcogenides (AgE1–xExPh; E = S, Se, Te)
Alloying is a powerful strategy for tuning the electronic band structure and optical properties of semiconductors. Here, we investigate the thermodynamic stability and excitonic properties of mixed-chalcogen alloys of two-dimensional (2D) hybrid organic–inorganic silver phenylchalcogenides (AgEPh; E = S, Se, Te). Using a variety of structural and optical characterization techniques, we demonstrate that the AgSePh-AgTePh system forms homogeneous alloys (AgSe1–xTexPh, 0 ≤ x ≤ 1) across all compositions, whereas the AgSPh-AgSePh and AgSPh-AgTePh systems exhibit distinct miscibility gaps. Density functional theory calculations reveal that chalcogen mixing is energetically unfavorable in all cases but comparable in magnitude to the ideal entropy of mixing at room temperature. Because AgSePh and AgTePh have the same crystal structure (which is different from AgSPh), alloying is predicted to be thermodynamically preferred over phase separation in the case of AgSePh-AgTePh, whereas phase separation is predicted to be more favorable than alloying for both the AgSPh-AgSePh and AgSPh-AgTePh systems, in agreement with experimental observations. Homogeneous AgSe1–xTexPh alloys exhibit continuously tunable excitonic absorption resonances in the ultraviolet–visible range, while the emission spectrum reveals competition between exciton delocalization (characteristic of AgSePh) and localization behavior (characteristic of AgTePh). Overall, these observations provide insight into the thermodynamics of 2D silver phenylchalcogenides and the effect of lattice composition on electron–phonon interactions in 2D hybrid organic–inorganic semiconductors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信