Kamilia H A Mohammed, Fatma Rasslan, Marwa A Abd El-Fattah, Seham Shawky, Omnya M Amin, Heba A Eassa
{"title":"局部递送带正电荷的含诺氟沙星的脂质-聚合物混合纳米颗粒治疗烧伤感染。","authors":"Kamilia H A Mohammed, Fatma Rasslan, Marwa A Abd El-Fattah, Seham Shawky, Omnya M Amin, Heba A Eassa","doi":"10.2174/0126673878316672241122041157","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Norfloxacin (NFX) is a wide-spectrum antibacterial agent that suffers from low water solubility and first-pass metabolism. This diminishes its oral bioavailability by 60-70%.</p><p><strong>Objective: </strong>This work aims to formulate a topical gel of NFX-loaded lipid polymer hybrid nanoparticles (NFX-LPHNPs) that combine the merits of liposomes and polymeric nanoparticles to overcome these problems.</p><p><strong>Methods: </strong>NFX-LPHNPs formulations were developed using Precirol ATO (lipid) and Eudragit RL100 (polymer). They were characterized for particle size, uniformity of distribution, entrapment efficiency, zeta potential, and in-vitro release. Box-Behnken design was applied to study sequentially different variables' impact on material attributes. Then the optimized formula was re-evaluated, and incorporated in an HPMC-gel formulation. The gel formulation was evaluated for its physical properties, in vitro-release, and antibacterial activity.</p><p><strong>Results: </strong>NFX-LPHNPs exhibited particle sizes ranging from 28.92 to 730.30 nm. Particles were uniformly distributed with a positively charged surface (indicated by zeta potential with values from +3.91 to +60.2 mV). Formulations showed a % cumulative drug release of 87.9-100% in 8 h. The optimized formula showed a satisfied fit of measured-to-predicted responses with 159 nm particle size, 92.61% release and 79.2% entrapment efficiency. Gel formulation showed a sustained release over 24h. Antibacterial testing against Staphylococcus aureus, Acinetobacter baumannii and Pseudomonas aeruginosa revealed enhanced activity of NFX-LPHNPs against these pathogens compared to bare NFX loaded gel.</p><p><strong>Conclusion: </strong>These results illustrated the high potential of lipid-polymer hybrid nanoparticles to improve NFX activity against resistant pathogens common in burn infections. Moreover, the topical application helps overcome Norfloxacin oral-associated problems.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treating Burn Infections With Topical Delivery of Positively Charged Norfloxacin-Loaded Lipid-Polymer Hybrid Nanoparticles.\",\"authors\":\"Kamilia H A Mohammed, Fatma Rasslan, Marwa A Abd El-Fattah, Seham Shawky, Omnya M Amin, Heba A Eassa\",\"doi\":\"10.2174/0126673878316672241122041157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Norfloxacin (NFX) is a wide-spectrum antibacterial agent that suffers from low water solubility and first-pass metabolism. This diminishes its oral bioavailability by 60-70%.</p><p><strong>Objective: </strong>This work aims to formulate a topical gel of NFX-loaded lipid polymer hybrid nanoparticles (NFX-LPHNPs) that combine the merits of liposomes and polymeric nanoparticles to overcome these problems.</p><p><strong>Methods: </strong>NFX-LPHNPs formulations were developed using Precirol ATO (lipid) and Eudragit RL100 (polymer). They were characterized for particle size, uniformity of distribution, entrapment efficiency, zeta potential, and in-vitro release. Box-Behnken design was applied to study sequentially different variables' impact on material attributes. Then the optimized formula was re-evaluated, and incorporated in an HPMC-gel formulation. The gel formulation was evaluated for its physical properties, in vitro-release, and antibacterial activity.</p><p><strong>Results: </strong>NFX-LPHNPs exhibited particle sizes ranging from 28.92 to 730.30 nm. Particles were uniformly distributed with a positively charged surface (indicated by zeta potential with values from +3.91 to +60.2 mV). Formulations showed a % cumulative drug release of 87.9-100% in 8 h. The optimized formula showed a satisfied fit of measured-to-predicted responses with 159 nm particle size, 92.61% release and 79.2% entrapment efficiency. Gel formulation showed a sustained release over 24h. Antibacterial testing against Staphylococcus aureus, Acinetobacter baumannii and Pseudomonas aeruginosa revealed enhanced activity of NFX-LPHNPs against these pathogens compared to bare NFX loaded gel.</p><p><strong>Conclusion: </strong>These results illustrated the high potential of lipid-polymer hybrid nanoparticles to improve NFX activity against resistant pathogens common in burn infections. Moreover, the topical application helps overcome Norfloxacin oral-associated problems.</p>\",\"PeriodicalId\":94352,\"journal\":{\"name\":\"Recent advances in drug delivery and formulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent advances in drug delivery and formulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0126673878316672241122041157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent advances in drug delivery and formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0126673878316672241122041157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Treating Burn Infections With Topical Delivery of Positively Charged Norfloxacin-Loaded Lipid-Polymer Hybrid Nanoparticles.
Background: Norfloxacin (NFX) is a wide-spectrum antibacterial agent that suffers from low water solubility and first-pass metabolism. This diminishes its oral bioavailability by 60-70%.
Objective: This work aims to formulate a topical gel of NFX-loaded lipid polymer hybrid nanoparticles (NFX-LPHNPs) that combine the merits of liposomes and polymeric nanoparticles to overcome these problems.
Methods: NFX-LPHNPs formulations were developed using Precirol ATO (lipid) and Eudragit RL100 (polymer). They were characterized for particle size, uniformity of distribution, entrapment efficiency, zeta potential, and in-vitro release. Box-Behnken design was applied to study sequentially different variables' impact on material attributes. Then the optimized formula was re-evaluated, and incorporated in an HPMC-gel formulation. The gel formulation was evaluated for its physical properties, in vitro-release, and antibacterial activity.
Results: NFX-LPHNPs exhibited particle sizes ranging from 28.92 to 730.30 nm. Particles were uniformly distributed with a positively charged surface (indicated by zeta potential with values from +3.91 to +60.2 mV). Formulations showed a % cumulative drug release of 87.9-100% in 8 h. The optimized formula showed a satisfied fit of measured-to-predicted responses with 159 nm particle size, 92.61% release and 79.2% entrapment efficiency. Gel formulation showed a sustained release over 24h. Antibacterial testing against Staphylococcus aureus, Acinetobacter baumannii and Pseudomonas aeruginosa revealed enhanced activity of NFX-LPHNPs against these pathogens compared to bare NFX loaded gel.
Conclusion: These results illustrated the high potential of lipid-polymer hybrid nanoparticles to improve NFX activity against resistant pathogens common in burn infections. Moreover, the topical application helps overcome Norfloxacin oral-associated problems.