增强临床决策:一种外部验证的机器学习模型,用于使用术前磁共振成像放射组学预测胶质瘤中异柠檬酸脱氢酶突变。

IF 3.7 Q1 CLINICAL NEUROLOGY
Neuro-oncology advances Pub Date : 2024-10-03 eCollection Date: 2024-01-01 DOI:10.1093/noajnl/vdae157
Jan Lost, Nader Ashraf, Leon Jekel, Marc von Reppert, Niklas Tillmanns, Klara Willms, Sara Merkaj, Gabriel Cassinelli Petersen, Arman Avesta, Divya Ramakrishnan, Antonio Omuro, Ali Nabavizadeh, Spyridon Bakas, Khaled Bousabarah, MingDe Lin, Sanjay Aneja, Michael Sabel, Mariam Aboian
{"title":"增强临床决策:一种外部验证的机器学习模型,用于使用术前磁共振成像放射组学预测胶质瘤中异柠檬酸脱氢酶突变。","authors":"Jan Lost, Nader Ashraf, Leon Jekel, Marc von Reppert, Niklas Tillmanns, Klara Willms, Sara Merkaj, Gabriel Cassinelli Petersen, Arman Avesta, Divya Ramakrishnan, Antonio Omuro, Ali Nabavizadeh, Spyridon Bakas, Khaled Bousabarah, MingDe Lin, Sanjay Aneja, Michael Sabel, Mariam Aboian","doi":"10.1093/noajnl/vdae157","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioma, the most prevalent primary brain tumor, poses challenges in prognosis, particularly in the high-grade subclass, despite advanced treatments. The recent shift in tumor classification underscores the crucial role of isocitrate dehydrogenase (IDH) mutation status in the clinical care of glioma patients. However, conventional methods for determining IDH status, including biopsy, have limitations. Exploring the use of machine learning (ML) on magnetic resonance imaging to predict IDH mutation status shows promise but encounters challenges in generalizability and translation into clinical practice because most studies either use single institution or homogeneous datasets for model training and validation. Our study aims to bridge this gap by using multi-institution data for model validation.</p><p><strong>Methods: </strong>This retrospective study utilizes data from large, annotated datasets for internal (377 cases from Yale New Haven Hospitals) and external validation (207 cases from facilities outside Yale New Haven Health). The 6-step research process includes image acquisition, semi-automated tumor segmentation, feature extraction, model building with feature selection, internal validation, and external validation. An extreme gradient boosting ML model predicted the IDH mutation status, confirmed by immunohistochemistry.</p><p><strong>Results: </strong>The ML model demonstrated high performance, with an Area under the Curve (AUC), Accuracy, Sensitivity, and Specificity in internal validation of 0.862, 0.865, 0.885, and 0.713, and external validation of 0.835, 0.851, 0.850, and 0.847.</p><p><strong>Conclusions: </strong>The ML model, built on a heterogeneous dataset, provided robust results in external validation for the prediction task, emphasizing its potential clinical utility. Future research should explore expanding its applicability and validation in diverse global healthcare settings.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"6 1","pages":"vdae157"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630777/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging.\",\"authors\":\"Jan Lost, Nader Ashraf, Leon Jekel, Marc von Reppert, Niklas Tillmanns, Klara Willms, Sara Merkaj, Gabriel Cassinelli Petersen, Arman Avesta, Divya Ramakrishnan, Antonio Omuro, Ali Nabavizadeh, Spyridon Bakas, Khaled Bousabarah, MingDe Lin, Sanjay Aneja, Michael Sabel, Mariam Aboian\",\"doi\":\"10.1093/noajnl/vdae157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Glioma, the most prevalent primary brain tumor, poses challenges in prognosis, particularly in the high-grade subclass, despite advanced treatments. The recent shift in tumor classification underscores the crucial role of isocitrate dehydrogenase (IDH) mutation status in the clinical care of glioma patients. However, conventional methods for determining IDH status, including biopsy, have limitations. Exploring the use of machine learning (ML) on magnetic resonance imaging to predict IDH mutation status shows promise but encounters challenges in generalizability and translation into clinical practice because most studies either use single institution or homogeneous datasets for model training and validation. Our study aims to bridge this gap by using multi-institution data for model validation.</p><p><strong>Methods: </strong>This retrospective study utilizes data from large, annotated datasets for internal (377 cases from Yale New Haven Hospitals) and external validation (207 cases from facilities outside Yale New Haven Health). The 6-step research process includes image acquisition, semi-automated tumor segmentation, feature extraction, model building with feature selection, internal validation, and external validation. An extreme gradient boosting ML model predicted the IDH mutation status, confirmed by immunohistochemistry.</p><p><strong>Results: </strong>The ML model demonstrated high performance, with an Area under the Curve (AUC), Accuracy, Sensitivity, and Specificity in internal validation of 0.862, 0.865, 0.885, and 0.713, and external validation of 0.835, 0.851, 0.850, and 0.847.</p><p><strong>Conclusions: </strong>The ML model, built on a heterogeneous dataset, provided robust results in external validation for the prediction task, emphasizing its potential clinical utility. Future research should explore expanding its applicability and validation in diverse global healthcare settings.</p>\",\"PeriodicalId\":94157,\"journal\":{\"name\":\"Neuro-oncology advances\",\"volume\":\"6 1\",\"pages\":\"vdae157\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630777/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/noajnl/vdae157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:神经胶质瘤是最常见的原发性脑肿瘤,尽管有先进的治疗方法,但其预后仍存在挑战,特别是在高级别亚型中。最近肿瘤分类的转变强调了异柠檬酸脱氢酶(IDH)突变状态在胶质瘤患者临床护理中的关键作用。然而,常规的方法来确定IDH状态,包括活检,有局限性。探索使用磁共振成像上的机器学习(ML)来预测IDH突变状态显示出希望,但在推广和转化为临床实践方面遇到挑战,因为大多数研究要么使用单一机构,要么使用同质数据集进行模型训练和验证。我们的研究旨在通过使用多机构数据进行模型验证来弥合这一差距。方法:本回顾性研究利用了来自大型、带注释的数据集的数据,用于内部验证(377例来自耶鲁纽黑文医院)和外部验证(207例来自耶鲁纽黑文医疗中心以外的机构)。6步研究过程包括图像采集、半自动肿瘤分割、特征提取、基于特征选择的模型构建、内部验证和外部验证。极端梯度增强ML模型预测IDH突变状态,免疫组织化学证实。结果:ML模型性能良好,内部验证的曲线下面积(AUC)、准确度、灵敏度和特异性分别为0.862、0.865、0.885和0.713,外部验证的准确度、灵敏度和特异性分别为0.835、0.851、0.850和0.847。结论:基于异构数据集的ML模型在预测任务的外部验证中提供了稳健的结果,强调了其潜在的临床应用。未来的研究应探索在不同的全球医疗保健环境中扩大其适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging.

Background: Glioma, the most prevalent primary brain tumor, poses challenges in prognosis, particularly in the high-grade subclass, despite advanced treatments. The recent shift in tumor classification underscores the crucial role of isocitrate dehydrogenase (IDH) mutation status in the clinical care of glioma patients. However, conventional methods for determining IDH status, including biopsy, have limitations. Exploring the use of machine learning (ML) on magnetic resonance imaging to predict IDH mutation status shows promise but encounters challenges in generalizability and translation into clinical practice because most studies either use single institution or homogeneous datasets for model training and validation. Our study aims to bridge this gap by using multi-institution data for model validation.

Methods: This retrospective study utilizes data from large, annotated datasets for internal (377 cases from Yale New Haven Hospitals) and external validation (207 cases from facilities outside Yale New Haven Health). The 6-step research process includes image acquisition, semi-automated tumor segmentation, feature extraction, model building with feature selection, internal validation, and external validation. An extreme gradient boosting ML model predicted the IDH mutation status, confirmed by immunohistochemistry.

Results: The ML model demonstrated high performance, with an Area under the Curve (AUC), Accuracy, Sensitivity, and Specificity in internal validation of 0.862, 0.865, 0.885, and 0.713, and external validation of 0.835, 0.851, 0.850, and 0.847.

Conclusions: The ML model, built on a heterogeneous dataset, provided robust results in external validation for the prediction task, emphasizing its potential clinical utility. Future research should explore expanding its applicability and validation in diverse global healthcare settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信