基于深度学习的胶质母细胞瘤术后分割和切除程度评估:发展、外部验证和模型比较。

IF 3.7 Q1 CLINICAL NEUROLOGY
Neuro-oncology advances Pub Date : 2024-11-16 eCollection Date: 2024-01-01 DOI:10.1093/noajnl/vdae199
Santiago Cepeda, Roberto Romero, Lidia Luque, Daniel García-Pérez, Guillermo Blasco, Luigi Tommaso Luppino, Samuel Kuttner, Olga Esteban-Sinovas, Ignacio Arrese, Ole Solheim, Live Eikenes, Anna Karlberg, Ángel Pérez-Núñez, Olivier Zanier, Carlo Serra, Victor E Staartjes, Andrea Bianconi, Luca Francesco Rossi, Diego Garbossa, Trinidad Escudero, Roberto Hornero, Rosario Sarabia
{"title":"基于深度学习的胶质母细胞瘤术后分割和切除程度评估:发展、外部验证和模型比较。","authors":"Santiago Cepeda, Roberto Romero, Lidia Luque, Daniel García-Pérez, Guillermo Blasco, Luigi Tommaso Luppino, Samuel Kuttner, Olga Esteban-Sinovas, Ignacio Arrese, Ole Solheim, Live Eikenes, Anna Karlberg, Ángel Pérez-Núñez, Olivier Zanier, Carlo Serra, Victor E Staartjes, Andrea Bianconi, Luca Francesco Rossi, Diego Garbossa, Trinidad Escudero, Roberto Hornero, Rosario Sarabia","doi":"10.1093/noajnl/vdae199","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The pursuit of automated methods to assess the extent of resection (EOR) in glioblastomas is challenging, requiring precise measurement of residual tumor volume. Many algorithms focus on preoperative scans, making them unsuitable for postoperative studies. Our objective was to develop a deep learning-based model for postoperative segmentation using magnetic resonance imaging (MRI). We also compared our model's performance with other available algorithms.</p><p><strong>Methods: </strong>To develop the segmentation model, a training cohort from 3 research institutions and 3 public databases was used. Multiparametric MRI scans with ground truth labels for contrast-enhancing tumor (ET), edema, and surgical cavity, served as training data. The models were trained using MONAI and nnU-Net frameworks. Comparisons were made with currently available segmentation models using an external cohort from a research institution and a public database. Additionally, the model's ability to classify EOR was evaluated using the RANO-Resect classification system. To further validate our best-trained model, an additional independent cohort was used.</p><p><strong>Results: </strong>The study included 586 scans: 395 for model training, 52 for model comparison, and 139 scans for independent validation. The nnU-Net framework produced the best model with median Dice scores of 0.81 for contrast ET, 0.77 for edema, and 0.81 for surgical cavities. Our best-trained model classified patients into maximal and submaximal resection categories with 96% accuracy in the model comparison dataset and 84% in the independent validation cohort.</p><p><strong>Conclusions: </strong>Our nnU-Net-based model outperformed other algorithms in both segmentation and EOR classification tasks, providing a freely accessible tool with promising clinical applicability.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"6 1","pages":"vdae199"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631186/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based postoperative glioblastoma segmentation and extent of resection evaluation: Development, external validation, and model comparison.\",\"authors\":\"Santiago Cepeda, Roberto Romero, Lidia Luque, Daniel García-Pérez, Guillermo Blasco, Luigi Tommaso Luppino, Samuel Kuttner, Olga Esteban-Sinovas, Ignacio Arrese, Ole Solheim, Live Eikenes, Anna Karlberg, Ángel Pérez-Núñez, Olivier Zanier, Carlo Serra, Victor E Staartjes, Andrea Bianconi, Luca Francesco Rossi, Diego Garbossa, Trinidad Escudero, Roberto Hornero, Rosario Sarabia\",\"doi\":\"10.1093/noajnl/vdae199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The pursuit of automated methods to assess the extent of resection (EOR) in glioblastomas is challenging, requiring precise measurement of residual tumor volume. Many algorithms focus on preoperative scans, making them unsuitable for postoperative studies. Our objective was to develop a deep learning-based model for postoperative segmentation using magnetic resonance imaging (MRI). We also compared our model's performance with other available algorithms.</p><p><strong>Methods: </strong>To develop the segmentation model, a training cohort from 3 research institutions and 3 public databases was used. Multiparametric MRI scans with ground truth labels for contrast-enhancing tumor (ET), edema, and surgical cavity, served as training data. The models were trained using MONAI and nnU-Net frameworks. Comparisons were made with currently available segmentation models using an external cohort from a research institution and a public database. Additionally, the model's ability to classify EOR was evaluated using the RANO-Resect classification system. To further validate our best-trained model, an additional independent cohort was used.</p><p><strong>Results: </strong>The study included 586 scans: 395 for model training, 52 for model comparison, and 139 scans for independent validation. The nnU-Net framework produced the best model with median Dice scores of 0.81 for contrast ET, 0.77 for edema, and 0.81 for surgical cavities. Our best-trained model classified patients into maximal and submaximal resection categories with 96% accuracy in the model comparison dataset and 84% in the independent validation cohort.</p><p><strong>Conclusions: </strong>Our nnU-Net-based model outperformed other algorithms in both segmentation and EOR classification tasks, providing a freely accessible tool with promising clinical applicability.</p>\",\"PeriodicalId\":94157,\"journal\":{\"name\":\"Neuro-oncology advances\",\"volume\":\"6 1\",\"pages\":\"vdae199\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631186/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/noajnl/vdae199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:对胶质母细胞瘤切除程度(EOR)的自动化评估方法的追求是具有挑战性的,需要精确测量残余肿瘤体积。许多算法集中于术前扫描,使得它们不适合术后研究。我们的目标是开发一种基于深度学习的模型,用于使用磁共振成像(MRI)进行术后分割。我们还将模型的性能与其他可用算法进行了比较。方法:采用来自3个研究机构和3个公共数据库的培训队列建立分割模型。多参数MRI扫描与基础真值标签的对比增强肿瘤(ET),水肿和手术腔,作为训练数据。使用MONAI和nnU-Net框架对模型进行训练。使用来自研究机构和公共数据库的外部队列与当前可用的分割模型进行比较。此外,使用RANO-Resect分类系统对模型的EOR分类能力进行了评估。为了进一步验证我们训练最好的模型,我们使用了一个额外的独立队列。结果:研究包括586次扫描:395次用于模型训练,52次用于模型比较,139次用于独立验证。nnU-Net框架产生了最佳模型,对比ET的中位Dice得分为0.81,水肿的中位Dice得分为0.77,手术腔的中位Dice得分为0.81。我们训练最好的模型将患者分为最大和次最大切除类别,在模型比较数据集中准确率为96%,在独立验证队列中准确率为84%。结论:我们基于nnu - net的模型在分割和提高采收率分类任务上都优于其他算法,提供了一个具有良好临床适用性的免费工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based postoperative glioblastoma segmentation and extent of resection evaluation: Development, external validation, and model comparison.

Background: The pursuit of automated methods to assess the extent of resection (EOR) in glioblastomas is challenging, requiring precise measurement of residual tumor volume. Many algorithms focus on preoperative scans, making them unsuitable for postoperative studies. Our objective was to develop a deep learning-based model for postoperative segmentation using magnetic resonance imaging (MRI). We also compared our model's performance with other available algorithms.

Methods: To develop the segmentation model, a training cohort from 3 research institutions and 3 public databases was used. Multiparametric MRI scans with ground truth labels for contrast-enhancing tumor (ET), edema, and surgical cavity, served as training data. The models were trained using MONAI and nnU-Net frameworks. Comparisons were made with currently available segmentation models using an external cohort from a research institution and a public database. Additionally, the model's ability to classify EOR was evaluated using the RANO-Resect classification system. To further validate our best-trained model, an additional independent cohort was used.

Results: The study included 586 scans: 395 for model training, 52 for model comparison, and 139 scans for independent validation. The nnU-Net framework produced the best model with median Dice scores of 0.81 for contrast ET, 0.77 for edema, and 0.81 for surgical cavities. Our best-trained model classified patients into maximal and submaximal resection categories with 96% accuracy in the model comparison dataset and 84% in the independent validation cohort.

Conclusions: Our nnU-Net-based model outperformed other algorithms in both segmentation and EOR classification tasks, providing a freely accessible tool with promising clinical applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信