Camille E Wendlandt, Julio Avelar-Barragan, Avissa J Zomorrodian, Khadija Al-Moussawi, Stephanie S Porter, Joel L Sachs
{"title":"在混合感染中,嗜毒嗜毒杆菌对宿主的控制限制了无效缓生根瘤菌共生体的适应度增益。","authors":"Camille E Wendlandt, Julio Avelar-Barragan, Avissa J Zomorrodian, Khadija Al-Moussawi, Stephanie S Porter, Joel L Sachs","doi":"10.1093/jeb/voae151","DOIUrl":null,"url":null,"abstract":"<p><p>Plant hosts can gain significant growth benefits from symbiosis with microbes, but these benefits could be threatened by divergent fitness interests among partners. Here, we measured fitness outcomes in symbiosis, by varying the genotypes of both microbes and hosts, to examine scenarios that might favour uncooperative symbionts. We studied associations between Acmispon strigosus, an annual legume native to California, and its nitrogen-fixing symbionts in the genus Bradyrhizobium. Bradyrhizobium symbionts form root nodules on compatible hosts, with strains varying from effective, fixing substantial nitrogen for the host, to ineffective strains that do not fix nitrogen and provide no benefit to host growth. We co-inoculated four A. strigosus plant lines with nine combinations of effective and ineffective Bradyrhizobium strains and measured the relative fitness of ineffective strains within individual nodules, as hosts must select against uncooperative symbionts to maintain benefits. In mixed infections, ineffective strains always had lower relative fitness in nodules compared to beneficial strains, consistent with efficient punishment of non-fixing rhizobia. However, ineffective strains exhibited genotypic variation in their fitness in nodules within individual nodules co-infected with a beneficial strain, suggesting a role for symbiont competitiveness in shaping this joint phenotype. Variation in symbiont fitness during co-inoculations did not measurably affect plant performance, suggesting that predicted conflict over the joint phenotype of rhizobia fitness has negligible effect on the host.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"261-271"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Host control by Acmispon strigosus constrains fitness gains of ineffective Bradyrhizobium symbionts in mixed infections.\",\"authors\":\"Camille E Wendlandt, Julio Avelar-Barragan, Avissa J Zomorrodian, Khadija Al-Moussawi, Stephanie S Porter, Joel L Sachs\",\"doi\":\"10.1093/jeb/voae151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant hosts can gain significant growth benefits from symbiosis with microbes, but these benefits could be threatened by divergent fitness interests among partners. Here, we measured fitness outcomes in symbiosis, by varying the genotypes of both microbes and hosts, to examine scenarios that might favour uncooperative symbionts. We studied associations between Acmispon strigosus, an annual legume native to California, and its nitrogen-fixing symbionts in the genus Bradyrhizobium. Bradyrhizobium symbionts form root nodules on compatible hosts, with strains varying from effective, fixing substantial nitrogen for the host, to ineffective strains that do not fix nitrogen and provide no benefit to host growth. We co-inoculated four A. strigosus plant lines with nine combinations of effective and ineffective Bradyrhizobium strains and measured the relative fitness of ineffective strains within individual nodules, as hosts must select against uncooperative symbionts to maintain benefits. In mixed infections, ineffective strains always had lower relative fitness in nodules compared to beneficial strains, consistent with efficient punishment of non-fixing rhizobia. However, ineffective strains exhibited genotypic variation in their fitness in nodules within individual nodules co-infected with a beneficial strain, suggesting a role for symbiont competitiveness in shaping this joint phenotype. Variation in symbiont fitness during co-inoculations did not measurably affect plant performance, suggesting that predicted conflict over the joint phenotype of rhizobia fitness has negligible effect on the host.</p>\",\"PeriodicalId\":50198,\"journal\":{\"name\":\"Journal of Evolutionary Biology\",\"volume\":\" \",\"pages\":\"261-271\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolutionary Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jeb/voae151\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voae151","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Host control by Acmispon strigosus constrains fitness gains of ineffective Bradyrhizobium symbionts in mixed infections.
Plant hosts can gain significant growth benefits from symbiosis with microbes, but these benefits could be threatened by divergent fitness interests among partners. Here, we measured fitness outcomes in symbiosis, by varying the genotypes of both microbes and hosts, to examine scenarios that might favour uncooperative symbionts. We studied associations between Acmispon strigosus, an annual legume native to California, and its nitrogen-fixing symbionts in the genus Bradyrhizobium. Bradyrhizobium symbionts form root nodules on compatible hosts, with strains varying from effective, fixing substantial nitrogen for the host, to ineffective strains that do not fix nitrogen and provide no benefit to host growth. We co-inoculated four A. strigosus plant lines with nine combinations of effective and ineffective Bradyrhizobium strains and measured the relative fitness of ineffective strains within individual nodules, as hosts must select against uncooperative symbionts to maintain benefits. In mixed infections, ineffective strains always had lower relative fitness in nodules compared to beneficial strains, consistent with efficient punishment of non-fixing rhizobia. However, ineffective strains exhibited genotypic variation in their fitness in nodules within individual nodules co-infected with a beneficial strain, suggesting a role for symbiont competitiveness in shaping this joint phenotype. Variation in symbiont fitness during co-inoculations did not measurably affect plant performance, suggesting that predicted conflict over the joint phenotype of rhizobia fitness has negligible effect on the host.
期刊介绍:
It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.