节肢动物mtDNA缺失:一个渐进起源的案例研究。

IF 2.1 3区 生物学 Q3 ECOLOGY
Víctor Noguerales, Brent C Emerson
{"title":"节肢动物mtDNA缺失:一个渐进起源的案例研究。","authors":"Víctor Noguerales, Brent C Emerson","doi":"10.1093/jeb/voae152","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial paraphyly between arthropod species is not uncommon and has been speculated to largely be the result of incomplete lineage sorting (ILS) of ancestral variation within the common ancestor of both species, with hybridization playing only a minor role. However, in the absence of comparable nuclear genetic data, the relative roles of ILS and hybridization in explaining mitochondrial DNA (mtDNA) paraphyly remain unclear. Hybridization itself is a multifaceted gateway to mtDNA paraphyly, which may lead to paraphyly across both the nuclear and mitochondrial genomes, or paraphyly that is largely restricted to the mitochondrial genome. These different outcomes will depend upon the frequency of hybridization, its demographic context, and the extent to which mtDNA is subject to direct selection, indirect selection, or neutral processes. Here, we describe extensive mtDNA paraphyly between two species of iron-clad beetle (Zopheridae) and evaluate competing explanations for its origin. We first test between hypotheses of ILS and hybridization, revealing strong nuclear genetic differentiation between species, but with the complete replacement of Tarphius simplex mtDNA through the introgression of at least 5 mtDNA haplotypes from T. canariensis. We then contrast explanations of direct selection, indirect selection, or genetic drift for observed patterns of mtDNA introgression. Our results highlight how introgression can lead to complex patterns of mtDNA paraphyly across arthropod species, while simultaneously revealing the challenges for understanding the selective or neutral drivers that underpin such patterns.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"272-283"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arthropod mtDNA paraphyly: a case study of introgressive origin.\",\"authors\":\"Víctor Noguerales, Brent C Emerson\",\"doi\":\"10.1093/jeb/voae152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial paraphyly between arthropod species is not uncommon and has been speculated to largely be the result of incomplete lineage sorting (ILS) of ancestral variation within the common ancestor of both species, with hybridization playing only a minor role. However, in the absence of comparable nuclear genetic data, the relative roles of ILS and hybridization in explaining mitochondrial DNA (mtDNA) paraphyly remain unclear. Hybridization itself is a multifaceted gateway to mtDNA paraphyly, which may lead to paraphyly across both the nuclear and mitochondrial genomes, or paraphyly that is largely restricted to the mitochondrial genome. These different outcomes will depend upon the frequency of hybridization, its demographic context, and the extent to which mtDNA is subject to direct selection, indirect selection, or neutral processes. Here, we describe extensive mtDNA paraphyly between two species of iron-clad beetle (Zopheridae) and evaluate competing explanations for its origin. We first test between hypotheses of ILS and hybridization, revealing strong nuclear genetic differentiation between species, but with the complete replacement of Tarphius simplex mtDNA through the introgression of at least 5 mtDNA haplotypes from T. canariensis. We then contrast explanations of direct selection, indirect selection, or genetic drift for observed patterns of mtDNA introgression. Our results highlight how introgression can lead to complex patterns of mtDNA paraphyly across arthropod species, while simultaneously revealing the challenges for understanding the selective or neutral drivers that underpin such patterns.</p>\",\"PeriodicalId\":50198,\"journal\":{\"name\":\"Journal of Evolutionary Biology\",\"volume\":\" \",\"pages\":\"272-283\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolutionary Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jeb/voae152\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voae152","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

节肢动物物种之间的线粒体畸形并不罕见,据推测,这在很大程度上是由于两种物种的共同祖先中祖先变异的不完全谱系分类(ILS)造成的,杂交只起了很小的作用。然而,由于缺乏可比较的核遗传数据,ILS和杂交在解释线粒体DNA (mtDNA)偏瘫中的相对作用仍然不清楚。杂交本身是一个多方面的途径,它可能导致跨核和线粒体基因组的parparly,或者主要局限于线粒体基因组的parparly。这些不同的结果将取决于杂交的频率,其人口背景,以及mtDNA受直接选择,间接选择或中性过程影响的程度。在这里,我们描述了两种铁壳甲虫(虫科)之间广泛的mtDNA片段,并评估了其起源的竞争解释。我们首先在ILS和杂交假设之间进行了测试,揭示了物种之间强烈的核遗传分化,但通过至少5个单倍型的渗入,完全取代了单倍型Tarphius simplex的mtDNA。然后,我们对观察到的mtDNA渗入模式的直接选择、间接选择或遗传漂变的解释进行了对比。我们的研究结果强调了基因渗入如何导致跨节肢动物物种的mtDNA片段的复杂模式,同时揭示了理解支撑这种模式的选择性或中性驱动因素的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arthropod mtDNA paraphyly: a case study of introgressive origin.

Mitochondrial paraphyly between arthropod species is not uncommon and has been speculated to largely be the result of incomplete lineage sorting (ILS) of ancestral variation within the common ancestor of both species, with hybridization playing only a minor role. However, in the absence of comparable nuclear genetic data, the relative roles of ILS and hybridization in explaining mitochondrial DNA (mtDNA) paraphyly remain unclear. Hybridization itself is a multifaceted gateway to mtDNA paraphyly, which may lead to paraphyly across both the nuclear and mitochondrial genomes, or paraphyly that is largely restricted to the mitochondrial genome. These different outcomes will depend upon the frequency of hybridization, its demographic context, and the extent to which mtDNA is subject to direct selection, indirect selection, or neutral processes. Here, we describe extensive mtDNA paraphyly between two species of iron-clad beetle (Zopheridae) and evaluate competing explanations for its origin. We first test between hypotheses of ILS and hybridization, revealing strong nuclear genetic differentiation between species, but with the complete replacement of Tarphius simplex mtDNA through the introgression of at least 5 mtDNA haplotypes from T. canariensis. We then contrast explanations of direct selection, indirect selection, or genetic drift for observed patterns of mtDNA introgression. Our results highlight how introgression can lead to complex patterns of mtDNA paraphyly across arthropod species, while simultaneously revealing the challenges for understanding the selective or neutral drivers that underpin such patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Evolutionary Biology
Journal of Evolutionary Biology 生物-进化生物学
CiteScore
4.20
自引率
4.80%
发文量
152
审稿时长
3-6 weeks
期刊介绍: It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信