Jiye Yoo, Yongchan Lee, Youngil Park, Jongin Lee, Joon Young Choi, Heekwan Lee, Jeong Uk Lim
{"title":"肺癌与空气污染之间关系的最新进展。","authors":"Jiye Yoo, Yongchan Lee, Youngil Park, Jongin Lee, Joon Young Choi, Heekwan Lee, Jeong Uk Lim","doi":"10.4046/trd.2024.0092","DOIUrl":null,"url":null,"abstract":"<p><p>A significant portion of newly diagnosed lung cancer cases occurs in populations exposed to air pollution. The World Health Organization has identified air pollution as a human carcinogen, prompting many countries to implement monitoring systems for ambient particulate matter (PM). PM is composed of a complex mixture of organic and inorganic particles, both solid and liquid, that are found in the air. Given the carcinogenic properties of PM and the high prevalence of lung cancer among exposed populations, exploring their connection and clinical implications is critical for effectively preventing lung cancer in this group. This review explores the relationship between ambient PM and lung cancer. Epidemiological studies have demonstrated a dose-response relationship between PM exposure and lung cancer risk. PM exposure induces oxidative stress, disrupts the body's redox balance, and causes DNA damage, which is a crucial factor in cancer development. Recent findings on the strong correlation between ambient PM and adenocarcinoma highlight the importance of understanding the specific molecular and pathological mechanisms underlying pollution-related lung cancer. In addition to efforts to control emission sources at the international level, a more individualized approach is essential for preventing PM-related lung cancer.</p>","PeriodicalId":23368,"journal":{"name":"Tuberculosis and Respiratory Diseases","volume":" ","pages":"228-236"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010724/pdf/","citationCount":"0","resultStr":"{\"title\":\"Update in Association between Lung Cancer and Air Pollution.\",\"authors\":\"Jiye Yoo, Yongchan Lee, Youngil Park, Jongin Lee, Joon Young Choi, Heekwan Lee, Jeong Uk Lim\",\"doi\":\"10.4046/trd.2024.0092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A significant portion of newly diagnosed lung cancer cases occurs in populations exposed to air pollution. The World Health Organization has identified air pollution as a human carcinogen, prompting many countries to implement monitoring systems for ambient particulate matter (PM). PM is composed of a complex mixture of organic and inorganic particles, both solid and liquid, that are found in the air. Given the carcinogenic properties of PM and the high prevalence of lung cancer among exposed populations, exploring their connection and clinical implications is critical for effectively preventing lung cancer in this group. This review explores the relationship between ambient PM and lung cancer. Epidemiological studies have demonstrated a dose-response relationship between PM exposure and lung cancer risk. PM exposure induces oxidative stress, disrupts the body's redox balance, and causes DNA damage, which is a crucial factor in cancer development. Recent findings on the strong correlation between ambient PM and adenocarcinoma highlight the importance of understanding the specific molecular and pathological mechanisms underlying pollution-related lung cancer. In addition to efforts to control emission sources at the international level, a more individualized approach is essential for preventing PM-related lung cancer.</p>\",\"PeriodicalId\":23368,\"journal\":{\"name\":\"Tuberculosis and Respiratory Diseases\",\"volume\":\" \",\"pages\":\"228-236\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010724/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tuberculosis and Respiratory Diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4046/trd.2024.0092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tuberculosis and Respiratory Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4046/trd.2024.0092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Update in Association between Lung Cancer and Air Pollution.
A significant portion of newly diagnosed lung cancer cases occurs in populations exposed to air pollution. The World Health Organization has identified air pollution as a human carcinogen, prompting many countries to implement monitoring systems for ambient particulate matter (PM). PM is composed of a complex mixture of organic and inorganic particles, both solid and liquid, that are found in the air. Given the carcinogenic properties of PM and the high prevalence of lung cancer among exposed populations, exploring their connection and clinical implications is critical for effectively preventing lung cancer in this group. This review explores the relationship between ambient PM and lung cancer. Epidemiological studies have demonstrated a dose-response relationship between PM exposure and lung cancer risk. PM exposure induces oxidative stress, disrupts the body's redox balance, and causes DNA damage, which is a crucial factor in cancer development. Recent findings on the strong correlation between ambient PM and adenocarcinoma highlight the importance of understanding the specific molecular and pathological mechanisms underlying pollution-related lung cancer. In addition to efforts to control emission sources at the international level, a more individualized approach is essential for preventing PM-related lung cancer.