Ali S Hassan, Lisa A O'Donovan, James M Cowley, Belinda Akomeah, Renee J Phillips, Filomena Pettolino, Carolyn J Schultz, Rachel A Burton
{"title":"两种番茄纤维素合酶样M (CslM)基因亚型的异位表达影响细胞壁完整性并支持在阿拉伯半乳聚糖和/或鼠李糖半乳素- 1生物合成中的作用。","authors":"Ali S Hassan, Lisa A O'Donovan, James M Cowley, Belinda Akomeah, Renee J Phillips, Filomena Pettolino, Carolyn J Schultz, Rachel A Burton","doi":"10.1093/pcp/pcae145","DOIUrl":null,"url":null,"abstract":"<p><p>Diversification of the cellulose synthase superfamily of glycosyltransferases has provided plants with the ability to synthesize varied cell wall polysaccharides such as xyloglucan, mannans, and the mixed-linkage glucans of cereals. Surprisingly, some but not all members of the cellulose synthase-like M (CslM) gene family have recently been shown to be involved in the glycosylation of the aglycone core of a range of triterpenoid saponins. However, no cell wall activity has yet been attributed to any of the CslM gene family members. Here, evolution of the CslM gene family in eudicots is explored to better understand the differences between the two metabolically distinct classes of CslMs (CslM1 and CslM2) and the very closely related CslGs. To achieve this, a robust tBLASTn approach was developed to identify CslM1, CslM2, and CslG sequences using diagnostic peptides, suitable for complex genomes using unannotated and short-read datasets. To ascertain whether both CslM1 and CslM2 proteins have cell wall functions, in addition to the 'saponin' role of CslM2, tomato CslM1 and CslM2 genes were ectopically expressed in Arabidopsis thaliana by stable transformation and in the transient Nicotiana benthamiana system. Transformed plants were analysed with immunofluorescence, immunogold transmission electron microscopy, and cell wall polysaccharides were extracted for monosaccharide linkage analysis. Our results support a role for both CslM1 and CslM2 in the biosynthesis of type II arabinogalactan linkages, generating new insight into how the diverse functions of CslMs can coexist and providing clear targets for future research.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":"101-119"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775392/pdf/","citationCount":"0","resultStr":"{\"title\":\"In planta ectopic expression of two subtypes of tomato cellulose synthase-like M genes affects cell wall integrity and supports a role in arabinogalactan and/or rhamnogalacturonan-I biosynthesis.\",\"authors\":\"Ali S Hassan, Lisa A O'Donovan, James M Cowley, Belinda Akomeah, Renee J Phillips, Filomena Pettolino, Carolyn J Schultz, Rachel A Burton\",\"doi\":\"10.1093/pcp/pcae145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diversification of the cellulose synthase superfamily of glycosyltransferases has provided plants with the ability to synthesize varied cell wall polysaccharides such as xyloglucan, mannans, and the mixed-linkage glucans of cereals. Surprisingly, some but not all members of the cellulose synthase-like M (CslM) gene family have recently been shown to be involved in the glycosylation of the aglycone core of a range of triterpenoid saponins. However, no cell wall activity has yet been attributed to any of the CslM gene family members. Here, evolution of the CslM gene family in eudicots is explored to better understand the differences between the two metabolically distinct classes of CslMs (CslM1 and CslM2) and the very closely related CslGs. To achieve this, a robust tBLASTn approach was developed to identify CslM1, CslM2, and CslG sequences using diagnostic peptides, suitable for complex genomes using unannotated and short-read datasets. To ascertain whether both CslM1 and CslM2 proteins have cell wall functions, in addition to the 'saponin' role of CslM2, tomato CslM1 and CslM2 genes were ectopically expressed in Arabidopsis thaliana by stable transformation and in the transient Nicotiana benthamiana system. Transformed plants were analysed with immunofluorescence, immunogold transmission electron microscopy, and cell wall polysaccharides were extracted for monosaccharide linkage analysis. Our results support a role for both CslM1 and CslM2 in the biosynthesis of type II arabinogalactan linkages, generating new insight into how the diverse functions of CslMs can coexist and providing clear targets for future research.</p>\",\"PeriodicalId\":20575,\"journal\":{\"name\":\"Plant and Cell Physiology\",\"volume\":\" \",\"pages\":\"101-119\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775392/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Cell Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/pcp/pcae145\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcae145","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
In planta ectopic expression of two subtypes of tomato cellulose synthase-like M genes affects cell wall integrity and supports a role in arabinogalactan and/or rhamnogalacturonan-I biosynthesis.
Diversification of the cellulose synthase superfamily of glycosyltransferases has provided plants with the ability to synthesize varied cell wall polysaccharides such as xyloglucan, mannans, and the mixed-linkage glucans of cereals. Surprisingly, some but not all members of the cellulose synthase-like M (CslM) gene family have recently been shown to be involved in the glycosylation of the aglycone core of a range of triterpenoid saponins. However, no cell wall activity has yet been attributed to any of the CslM gene family members. Here, evolution of the CslM gene family in eudicots is explored to better understand the differences between the two metabolically distinct classes of CslMs (CslM1 and CslM2) and the very closely related CslGs. To achieve this, a robust tBLASTn approach was developed to identify CslM1, CslM2, and CslG sequences using diagnostic peptides, suitable for complex genomes using unannotated and short-read datasets. To ascertain whether both CslM1 and CslM2 proteins have cell wall functions, in addition to the 'saponin' role of CslM2, tomato CslM1 and CslM2 genes were ectopically expressed in Arabidopsis thaliana by stable transformation and in the transient Nicotiana benthamiana system. Transformed plants were analysed with immunofluorescence, immunogold transmission electron microscopy, and cell wall polysaccharides were extracted for monosaccharide linkage analysis. Our results support a role for both CslM1 and CslM2 in the biosynthesis of type II arabinogalactan linkages, generating new insight into how the diverse functions of CslMs can coexist and providing clear targets for future research.
期刊介绍:
Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels.
Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.