{"title":"增强关节炎患者的能力:通过Box-Behnken实验设计优化吡罗昔康微胶囊支架植入物的药物输送。","authors":"Sampath Kumar, Mothilal Mohan","doi":"10.2174/0122117385332757241104104727","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The necessity for extended drug discharge to alleviate pain without adverse effects underscores the importance of innovative drug delivery systems. Achieving sustained pain relief without compromising patient safety is a critical objective in healthcare. By extending the duration of drug action while suppressing side effects, such systems offer enhanced therapeutic outcomes and improved patient quality of life.</p><p><strong>Objective: </strong>This study endeavors to develop and appraise an innovative implantable drug delivery system by integrating NSAID-loaded gelatin microcapsules into a gelatin scaffold designed to augment drug delivery efficiency and sustain drug release.</p><p><strong>Method: </strong>Piroxicam-loaded microcapsules with a 1:1 ratio of poly lactic acid and poly lacto glycolic acid showed smaller particle size, good yield, entrapment efficiency, and discharge. They were selected to make gelatin scaffolds with Box Behnken Design using Design Expert software for optimization. The better scaffolds were made in the form of rod-shaped sub-dermal implants. The primary focus of the investigation was the evaluation of critical parameters, specifically entrapment efficiency and drug discharge properties as dependent variables.</p><p><strong>Results: </strong>Microcapsules with a 1:1 ratio of PLA and PLGA showed smaller particle sizes, good yield, entrapment efficiency, and discharge. Notably, the Design Expert-driven optimization yields highly favorable results. Furthermore, the scaffolds loaded with microcapsules exhibited favorable physicochemical assets, including drug discharge, for an extended period, underscoring their versatility for drug delivery.</p><p><strong>Conclusion: </strong>By employing Design Expert software for optimization, the study demonstrates promising results, particularly in sustained pain management for arthritis, potentially improving therapeutic outcomes and patient quality of life. The study concludes that the prepared implants (holding scaffolds impregnated with piroxicam-loaded microcapsules) can be promising for relieving arthritis all day.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empowering Arthritis Patients: Optimized Drug Delivery through Piroxicam Microcapsule-Embedded Scaffold Implants via Box-Behnken Experimental Design.\",\"authors\":\"Sampath Kumar, Mothilal Mohan\",\"doi\":\"10.2174/0122117385332757241104104727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The necessity for extended drug discharge to alleviate pain without adverse effects underscores the importance of innovative drug delivery systems. Achieving sustained pain relief without compromising patient safety is a critical objective in healthcare. By extending the duration of drug action while suppressing side effects, such systems offer enhanced therapeutic outcomes and improved patient quality of life.</p><p><strong>Objective: </strong>This study endeavors to develop and appraise an innovative implantable drug delivery system by integrating NSAID-loaded gelatin microcapsules into a gelatin scaffold designed to augment drug delivery efficiency and sustain drug release.</p><p><strong>Method: </strong>Piroxicam-loaded microcapsules with a 1:1 ratio of poly lactic acid and poly lacto glycolic acid showed smaller particle size, good yield, entrapment efficiency, and discharge. They were selected to make gelatin scaffolds with Box Behnken Design using Design Expert software for optimization. The better scaffolds were made in the form of rod-shaped sub-dermal implants. The primary focus of the investigation was the evaluation of critical parameters, specifically entrapment efficiency and drug discharge properties as dependent variables.</p><p><strong>Results: </strong>Microcapsules with a 1:1 ratio of PLA and PLGA showed smaller particle sizes, good yield, entrapment efficiency, and discharge. Notably, the Design Expert-driven optimization yields highly favorable results. Furthermore, the scaffolds loaded with microcapsules exhibited favorable physicochemical assets, including drug discharge, for an extended period, underscoring their versatility for drug delivery.</p><p><strong>Conclusion: </strong>By employing Design Expert software for optimization, the study demonstrates promising results, particularly in sustained pain management for arthritis, potentially improving therapeutic outcomes and patient quality of life. The study concludes that the prepared implants (holding scaffolds impregnated with piroxicam-loaded microcapsules) can be promising for relieving arthritis all day.</p>\",\"PeriodicalId\":19774,\"journal\":{\"name\":\"Pharmaceutical nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122117385332757241104104727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385332757241104104727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Empowering Arthritis Patients: Optimized Drug Delivery through Piroxicam Microcapsule-Embedded Scaffold Implants via Box-Behnken Experimental Design.
Background: The necessity for extended drug discharge to alleviate pain without adverse effects underscores the importance of innovative drug delivery systems. Achieving sustained pain relief without compromising patient safety is a critical objective in healthcare. By extending the duration of drug action while suppressing side effects, such systems offer enhanced therapeutic outcomes and improved patient quality of life.
Objective: This study endeavors to develop and appraise an innovative implantable drug delivery system by integrating NSAID-loaded gelatin microcapsules into a gelatin scaffold designed to augment drug delivery efficiency and sustain drug release.
Method: Piroxicam-loaded microcapsules with a 1:1 ratio of poly lactic acid and poly lacto glycolic acid showed smaller particle size, good yield, entrapment efficiency, and discharge. They were selected to make gelatin scaffolds with Box Behnken Design using Design Expert software for optimization. The better scaffolds were made in the form of rod-shaped sub-dermal implants. The primary focus of the investigation was the evaluation of critical parameters, specifically entrapment efficiency and drug discharge properties as dependent variables.
Results: Microcapsules with a 1:1 ratio of PLA and PLGA showed smaller particle sizes, good yield, entrapment efficiency, and discharge. Notably, the Design Expert-driven optimization yields highly favorable results. Furthermore, the scaffolds loaded with microcapsules exhibited favorable physicochemical assets, including drug discharge, for an extended period, underscoring their versatility for drug delivery.
Conclusion: By employing Design Expert software for optimization, the study demonstrates promising results, particularly in sustained pain management for arthritis, potentially improving therapeutic outcomes and patient quality of life. The study concludes that the prepared implants (holding scaffolds impregnated with piroxicam-loaded microcapsules) can be promising for relieving arthritis all day.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.