Bing Jiang , Yan Wang , Xiaodong Zhi , Ai Liu , Lingyun Wang , Xuehan Wang , Zheng Wang , Ying Duan , Yingdong Li , Zheng Zhang
{"title":"基于网络药理学和实验研究探讨黄芪多糖对电离辐射心肌损伤的作用机制。","authors":"Bing Jiang , Yan Wang , Xiaodong Zhi , Ai Liu , Lingyun Wang , Xuehan Wang , Zheng Wang , Ying Duan , Yingdong Li , Zheng Zhang","doi":"10.1016/j.intimp.2024.113758","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the unavoidable impact of ionizing radiation on the heart located near the mediastinum, varying degrees of myocardial damage may occur. As a result, the clinical application of radiotherapy in cancer treatment is significantly limited. However, the molecular mechanisms underlying radiation-induced heart disease (RIHD) are not yet fully understood, and there is a lack of disease-specific treatment strategies. Astragalus polysaccharide (APS), is an active compound abundant in the traditional Chinese herb <em>Astragalus membranaceus (Fisch.) Bunge</em> (AS), has been shown to have cardioprotective effects against various cardiovascular diseases. Thus, this study aims to investigate the potential cardioprotective effect of APS on RIHD and its underlying molecular mechanisms. The network pharmacology results indicated that 9 core genes were identified from the biological network of the effective components of AS acting on RIHD. The results of GO enrichment analysis showed that these hub genes were mainly involved in biological processes such as cell apoptosis, cell proliferation, inflammatory response, and response to external stimuli. The results of KEGG enrichment analysis showed that these hub genes mainly regulated the occurrence of RIHD through pathways such as the EGFR signaling pathway, PI3K/Akt signaling pathway, IL-17 signaling pathway, and so on. In molecular docking analysis, we found that AKT1 and mTOR had good and stable binding abilities with the three types of glucosides rich in AS. The results of in vitro and in vivo experiments all showed that APS could not only improve cardiac dysfunction, myocardial injury, inflammatory response, and myocardial fibrosis in RIHD rats, but also alleviated apoptosis and atrophy of H9C2 cells under ionizing radiation stimulation. In addition, we also found that APS improved the accumulation of autophagic flux induced by ionizing radiation, which could be confirmed by the reversal of Beclin1, p62, LC3B proteins and accelerated degradation of accumulated autophagic vesicles. Rapamycin (Rap) was a classic autophagy flux inducer that could attenuate the improvement effect of APS on H9C2 cell apoptosis under ionizing radiation stimulation. Finally, we found that APS could reverse the inhibition of PI3K/Akt/mTOR signaling pathway activity by ionizing radiation in vitro, thereby improving ionizing radiation-induced autophagy flux accumulation, cardiomyocyte apoptosis, and atrophy. All in all, this study provides important evidence for understanding the molecular mechanisms of the cross-talk between autophagy and apoptosis, and provides new directions and insights for APS combined with autophagy regulators as a therapeutic strategy for RIHD.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"145 ","pages":"Article 113758"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the mechanism of action of astragalus polysaccharide on ionizing radiation-induced myocardial damage based on network pharmacology and experimental research\",\"authors\":\"Bing Jiang , Yan Wang , Xiaodong Zhi , Ai Liu , Lingyun Wang , Xuehan Wang , Zheng Wang , Ying Duan , Yingdong Li , Zheng Zhang\",\"doi\":\"10.1016/j.intimp.2024.113758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the unavoidable impact of ionizing radiation on the heart located near the mediastinum, varying degrees of myocardial damage may occur. As a result, the clinical application of radiotherapy in cancer treatment is significantly limited. However, the molecular mechanisms underlying radiation-induced heart disease (RIHD) are not yet fully understood, and there is a lack of disease-specific treatment strategies. Astragalus polysaccharide (APS), is an active compound abundant in the traditional Chinese herb <em>Astragalus membranaceus (Fisch.) Bunge</em> (AS), has been shown to have cardioprotective effects against various cardiovascular diseases. Thus, this study aims to investigate the potential cardioprotective effect of APS on RIHD and its underlying molecular mechanisms. The network pharmacology results indicated that 9 core genes were identified from the biological network of the effective components of AS acting on RIHD. The results of GO enrichment analysis showed that these hub genes were mainly involved in biological processes such as cell apoptosis, cell proliferation, inflammatory response, and response to external stimuli. The results of KEGG enrichment analysis showed that these hub genes mainly regulated the occurrence of RIHD through pathways such as the EGFR signaling pathway, PI3K/Akt signaling pathway, IL-17 signaling pathway, and so on. In molecular docking analysis, we found that AKT1 and mTOR had good and stable binding abilities with the three types of glucosides rich in AS. The results of in vitro and in vivo experiments all showed that APS could not only improve cardiac dysfunction, myocardial injury, inflammatory response, and myocardial fibrosis in RIHD rats, but also alleviated apoptosis and atrophy of H9C2 cells under ionizing radiation stimulation. In addition, we also found that APS improved the accumulation of autophagic flux induced by ionizing radiation, which could be confirmed by the reversal of Beclin1, p62, LC3B proteins and accelerated degradation of accumulated autophagic vesicles. Rapamycin (Rap) was a classic autophagy flux inducer that could attenuate the improvement effect of APS on H9C2 cell apoptosis under ionizing radiation stimulation. Finally, we found that APS could reverse the inhibition of PI3K/Akt/mTOR signaling pathway activity by ionizing radiation in vitro, thereby improving ionizing radiation-induced autophagy flux accumulation, cardiomyocyte apoptosis, and atrophy. All in all, this study provides important evidence for understanding the molecular mechanisms of the cross-talk between autophagy and apoptosis, and provides new directions and insights for APS combined with autophagy regulators as a therapeutic strategy for RIHD.</div></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"145 \",\"pages\":\"Article 113758\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156757692402280X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156757692402280X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Elucidating the mechanism of action of astragalus polysaccharide on ionizing radiation-induced myocardial damage based on network pharmacology and experimental research
Due to the unavoidable impact of ionizing radiation on the heart located near the mediastinum, varying degrees of myocardial damage may occur. As a result, the clinical application of radiotherapy in cancer treatment is significantly limited. However, the molecular mechanisms underlying radiation-induced heart disease (RIHD) are not yet fully understood, and there is a lack of disease-specific treatment strategies. Astragalus polysaccharide (APS), is an active compound abundant in the traditional Chinese herb Astragalus membranaceus (Fisch.) Bunge (AS), has been shown to have cardioprotective effects against various cardiovascular diseases. Thus, this study aims to investigate the potential cardioprotective effect of APS on RIHD and its underlying molecular mechanisms. The network pharmacology results indicated that 9 core genes were identified from the biological network of the effective components of AS acting on RIHD. The results of GO enrichment analysis showed that these hub genes were mainly involved in biological processes such as cell apoptosis, cell proliferation, inflammatory response, and response to external stimuli. The results of KEGG enrichment analysis showed that these hub genes mainly regulated the occurrence of RIHD through pathways such as the EGFR signaling pathway, PI3K/Akt signaling pathway, IL-17 signaling pathway, and so on. In molecular docking analysis, we found that AKT1 and mTOR had good and stable binding abilities with the three types of glucosides rich in AS. The results of in vitro and in vivo experiments all showed that APS could not only improve cardiac dysfunction, myocardial injury, inflammatory response, and myocardial fibrosis in RIHD rats, but also alleviated apoptosis and atrophy of H9C2 cells under ionizing radiation stimulation. In addition, we also found that APS improved the accumulation of autophagic flux induced by ionizing radiation, which could be confirmed by the reversal of Beclin1, p62, LC3B proteins and accelerated degradation of accumulated autophagic vesicles. Rapamycin (Rap) was a classic autophagy flux inducer that could attenuate the improvement effect of APS on H9C2 cell apoptosis under ionizing radiation stimulation. Finally, we found that APS could reverse the inhibition of PI3K/Akt/mTOR signaling pathway activity by ionizing radiation in vitro, thereby improving ionizing radiation-induced autophagy flux accumulation, cardiomyocyte apoptosis, and atrophy. All in all, this study provides important evidence for understanding the molecular mechanisms of the cross-talk between autophagy and apoptosis, and provides new directions and insights for APS combined with autophagy regulators as a therapeutic strategy for RIHD.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.