补充维生素K对中老年人群不同部位骨密度及骨代谢的影响。

IF 4.7 2区 医学 Q2 CELL & TISSUE ENGINEERING
Chenqi Xie, Jianbao Gong, Chenglong Zheng, Junwei Zhang, Jie Gao, Chunyan Tian, Xiaofei Guo, Shiyou Dai, Tianlin Gao
{"title":"补充维生素K对中老年人群不同部位骨密度及骨代谢的影响。","authors":"Chenqi Xie, Jianbao Gong, Chenglong Zheng, Junwei Zhang, Jie Gao, Chunyan Tian, Xiaofei Guo, Shiyou Dai, Tianlin Gao","doi":"10.1302/2046-3758.1312.BJR-2024-0053.R1","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults.</p><p><strong>Methods: </strong>The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023.</p><p><strong>Results: </strong>The results revealed that vitamin K supplementation increased BMD at the lumbar spine (p = 0.035). Moreover, the pooled effects demonstrated a notable increase in carboxylated osteocalcin (cOC) (p = 0.004), a decrease in uncarboxylated osteocalcin (ucOC) (p < 0.001), and no significant effect on total osteocalcin (tOC) (p = 0.076). Accordingly, the ratio of cOC to ucOC (p = 0.002) significantly increased, while the ratio of ucOC to tOC decreased (p = 0.043). However, there was no significant effect of vitamin K supplementation on other bone metabolism markers, such as cross-linked telopeptide of type 1 collagen (NTx), bone alkaline phosphatase (BAP), and procollagen I N-terminal propeptide (PINP). Subgroup analysis revealed that vitamin K notably enhanced bone health in females by increasing lumbar spine BMD (p = 0.028) and decreasing ucOC (p < 0.001). Vitamin K, especially vitamin K2, exhibited effects on maintaining or increasing lumbar spine BMD, and influencing the balance of cOC and ucOC.</p><p><strong>Conclusion: </strong>This review suggests that the beneficial effects of vitamin K supplementation on bone health primarily involve enhancing the carboxylation of OC rather than altering the total amount of OC.</p>","PeriodicalId":9074,"journal":{"name":"Bone & Joint Research","volume":"13 12","pages":"750-763"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631259/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of vitamin K supplementation on bone mineral density at different sites and bone metabolism in the middle-aged and elderly population.\",\"authors\":\"Chenqi Xie, Jianbao Gong, Chenglong Zheng, Junwei Zhang, Jie Gao, Chunyan Tian, Xiaofei Guo, Shiyou Dai, Tianlin Gao\",\"doi\":\"10.1302/2046-3758.1312.BJR-2024-0053.R1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults.</p><p><strong>Methods: </strong>The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023.</p><p><strong>Results: </strong>The results revealed that vitamin K supplementation increased BMD at the lumbar spine (p = 0.035). Moreover, the pooled effects demonstrated a notable increase in carboxylated osteocalcin (cOC) (p = 0.004), a decrease in uncarboxylated osteocalcin (ucOC) (p < 0.001), and no significant effect on total osteocalcin (tOC) (p = 0.076). Accordingly, the ratio of cOC to ucOC (p = 0.002) significantly increased, while the ratio of ucOC to tOC decreased (p = 0.043). However, there was no significant effect of vitamin K supplementation on other bone metabolism markers, such as cross-linked telopeptide of type 1 collagen (NTx), bone alkaline phosphatase (BAP), and procollagen I N-terminal propeptide (PINP). Subgroup analysis revealed that vitamin K notably enhanced bone health in females by increasing lumbar spine BMD (p = 0.028) and decreasing ucOC (p < 0.001). Vitamin K, especially vitamin K2, exhibited effects on maintaining or increasing lumbar spine BMD, and influencing the balance of cOC and ucOC.</p><p><strong>Conclusion: </strong>This review suggests that the beneficial effects of vitamin K supplementation on bone health primarily involve enhancing the carboxylation of OC rather than altering the total amount of OC.</p>\",\"PeriodicalId\":9074,\"journal\":{\"name\":\"Bone & Joint Research\",\"volume\":\"13 12\",\"pages\":\"750-763\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631259/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone & Joint Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1302/2046-3758.1312.BJR-2024-0053.R1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone & Joint Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1302/2046-3758.1312.BJR-2024-0053.R1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

目的:本荟萃分析和系统综述旨在全面研究补充维生素K对中老年人各部位骨矿物质密度(BMD)和骨代谢的影响。方法:全面检索PubMed、Web of Science、Cochrane Library数据库,检索时间自成立至2023年7月。结果:维生素K的补充增加了腰椎的骨密度(p = 0.035)。此外,综合效应显示羧化骨钙素(cOC)显著增加(p = 0.004),非羧化骨钙素(ucOC)显著降低(p < 0.001),对总骨钙素(tOC)无显著影响(p = 0.076)。因此,cOC与ucOC之比显著升高(p = 0.002), ucOC与tOC之比显著降低(p = 0.043)。然而,补充维生素K对其他骨代谢指标,如1型胶原交联末端肽(NTx)、骨碱性磷酸酶(BAP)和I型前胶原n端前肽(PINP)没有显著影响。亚组分析显示,维生素K通过增加腰椎骨密度(p = 0.028)和降低ucOC (p < 0.001)显著改善女性骨骼健康。维生素K,尤其是维生素K2对维持或增加腰椎骨密度,影响cOC和ucOC的平衡有一定作用。结论:本综述提示,补充维生素K对骨骼健康的有益作用主要是增强OC的羧基化,而不是改变OC的总量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of vitamin K supplementation on bone mineral density at different sites and bone metabolism in the middle-aged and elderly population.

Aims: This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults.

Methods: The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023.

Results: The results revealed that vitamin K supplementation increased BMD at the lumbar spine (p = 0.035). Moreover, the pooled effects demonstrated a notable increase in carboxylated osteocalcin (cOC) (p = 0.004), a decrease in uncarboxylated osteocalcin (ucOC) (p < 0.001), and no significant effect on total osteocalcin (tOC) (p = 0.076). Accordingly, the ratio of cOC to ucOC (p = 0.002) significantly increased, while the ratio of ucOC to tOC decreased (p = 0.043). However, there was no significant effect of vitamin K supplementation on other bone metabolism markers, such as cross-linked telopeptide of type 1 collagen (NTx), bone alkaline phosphatase (BAP), and procollagen I N-terminal propeptide (PINP). Subgroup analysis revealed that vitamin K notably enhanced bone health in females by increasing lumbar spine BMD (p = 0.028) and decreasing ucOC (p < 0.001). Vitamin K, especially vitamin K2, exhibited effects on maintaining or increasing lumbar spine BMD, and influencing the balance of cOC and ucOC.

Conclusion: This review suggests that the beneficial effects of vitamin K supplementation on bone health primarily involve enhancing the carboxylation of OC rather than altering the total amount of OC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone & Joint Research
Bone & Joint Research CELL & TISSUE ENGINEERING-ORTHOPEDICS
CiteScore
7.40
自引率
23.90%
发文量
156
审稿时长
12 weeks
期刊介绍: The gold open access journal for the musculoskeletal sciences. Included in PubMed and available in PubMed Central.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信