机器学习能提高内镜下第三脑室造瘘成功率评分的预测准确性吗?当代脑积水临床研究网络队列研究。

IF 1.3 4区 医学 Q4 CLINICAL NEUROLOGY
Armaan K Malhotra, Abhaya V Kulkarni, Leonard H Verhey, Ron W Reeder, Jay Riva-Cambrin, Hailey Jensen, Ian F Pollack, Michael McDowell, Brandon G Rocque, Mandeep S Tamber, Patrick J McDonald, Mark D Krieger, Jonathan A Pindrik, Albert M Isaacs, Jason S Hauptman, Samuel R Browd, William E Whitehead, Eric M Jackson, John C Wellons, Todd C Hankinson, Jason Chu, David D Limbrick, Jennifer M Strahle, John R W Kestle
{"title":"机器学习能提高内镜下第三脑室造瘘成功率评分的预测准确性吗?当代脑积水临床研究网络队列研究。","authors":"Armaan K Malhotra, Abhaya V Kulkarni, Leonard H Verhey, Ron W Reeder, Jay Riva-Cambrin, Hailey Jensen, Ian F Pollack, Michael McDowell, Brandon G Rocque, Mandeep S Tamber, Patrick J McDonald, Mark D Krieger, Jonathan A Pindrik, Albert M Isaacs, Jason S Hauptman, Samuel R Browd, William E Whitehead, Eric M Jackson, John C Wellons, Todd C Hankinson, Jason Chu, David D Limbrick, Jennifer M Strahle, John R W Kestle","doi":"10.1007/s00381-024-06667-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This Hydrocephalus Clinical Research Network (HCRN) study had two aims: (1) to compare the predictive performance of the original ETV Success Score (ETVSS) using logistic regression modeling with other newer machine learning models and (2) to assess whether inclusion of imaging variables improves prediction performance using machine learning models.</p><p><strong>Methods: </strong>We identified children undergoing first-time ETV for hydrocephalus that were enrolled prospectively at HCRN sites between 200 and 2020. The primary outcome was ETV success 6 months after index surgery. The cohort was randomly divided into training (70%) and testing (30%) datasets. The classic ETVSS variables were used for logistic regression and machine learning models. Predictive performance of each model was evaluated on the testing dataset using area under the receiver operating characteristic curve (AUROC).</p><p><strong>Results: </strong>There were 752 patients that underwent first time ETV, of which 185 patients (24.6%) experienced ETV failure within 6 months. For aim 1, using the classic ETVSS variables, machine learning models did not outperform logistic regression with AUROC 0.60 (95% CI: 0.52-0.69) for Naïve Bayes (highest machine learning model performance) and 0.68 (95% CI: 0.60-0.76) for logistic regression. After inclusion of imaging features (aim 2), machine learning model prediction improved but remained no better than the above logistic regression with the highest AUROC of 0.67 (95% CI: 0.59-0.75) attained using Naïve Bayes architecture compared to 0.68 (95% CI: 0.59-0.76) for logistic regression.</p><p><strong>Conclusions: </strong>This contemporary multicenter observational cohort study demonstrated that machine learning modeling strategies did not improve performance of the ETVSS model over logistic regression.</p>","PeriodicalId":9970,"journal":{"name":"Child's Nervous System","volume":"41 1","pages":"42"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does machine learning improve prediction accuracy of the Endoscopic Third Ventriculostomy Success Score? A contemporary Hydrocephalus Clinical Research Network cohort study.\",\"authors\":\"Armaan K Malhotra, Abhaya V Kulkarni, Leonard H Verhey, Ron W Reeder, Jay Riva-Cambrin, Hailey Jensen, Ian F Pollack, Michael McDowell, Brandon G Rocque, Mandeep S Tamber, Patrick J McDonald, Mark D Krieger, Jonathan A Pindrik, Albert M Isaacs, Jason S Hauptman, Samuel R Browd, William E Whitehead, Eric M Jackson, John C Wellons, Todd C Hankinson, Jason Chu, David D Limbrick, Jennifer M Strahle, John R W Kestle\",\"doi\":\"10.1007/s00381-024-06667-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This Hydrocephalus Clinical Research Network (HCRN) study had two aims: (1) to compare the predictive performance of the original ETV Success Score (ETVSS) using logistic regression modeling with other newer machine learning models and (2) to assess whether inclusion of imaging variables improves prediction performance using machine learning models.</p><p><strong>Methods: </strong>We identified children undergoing first-time ETV for hydrocephalus that were enrolled prospectively at HCRN sites between 200 and 2020. The primary outcome was ETV success 6 months after index surgery. The cohort was randomly divided into training (70%) and testing (30%) datasets. The classic ETVSS variables were used for logistic regression and machine learning models. Predictive performance of each model was evaluated on the testing dataset using area under the receiver operating characteristic curve (AUROC).</p><p><strong>Results: </strong>There were 752 patients that underwent first time ETV, of which 185 patients (24.6%) experienced ETV failure within 6 months. For aim 1, using the classic ETVSS variables, machine learning models did not outperform logistic regression with AUROC 0.60 (95% CI: 0.52-0.69) for Naïve Bayes (highest machine learning model performance) and 0.68 (95% CI: 0.60-0.76) for logistic regression. After inclusion of imaging features (aim 2), machine learning model prediction improved but remained no better than the above logistic regression with the highest AUROC of 0.67 (95% CI: 0.59-0.75) attained using Naïve Bayes architecture compared to 0.68 (95% CI: 0.59-0.76) for logistic regression.</p><p><strong>Conclusions: </strong>This contemporary multicenter observational cohort study demonstrated that machine learning modeling strategies did not improve performance of the ETVSS model over logistic regression.</p>\",\"PeriodicalId\":9970,\"journal\":{\"name\":\"Child's Nervous System\",\"volume\":\"41 1\",\"pages\":\"42\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Child's Nervous System\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00381-024-06667-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Child's Nervous System","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00381-024-06667-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:这项脑积水临床研究网络(HCRN)研究有两个目的:(1)使用逻辑回归模型与其他较新的机器学习模型比较原始ETV成功评分(ETVSS)的预测性能;(2)评估纳入成像变量是否提高了使用机器学习模型的预测性能。方法:我们确定了在HCRN站点前瞻性纳入的在2000年至2020年期间首次接受脑积水ETV治疗的儿童。主要结果是指数手术后6个月ETV成功。该队列随机分为训练(70%)和测试(30%)数据集。经典ETVSS变量用于逻辑回归和机器学习模型。使用受试者工作特征曲线下面积(AUROC)在测试数据集上评估每个模型的预测性能。结果:752例患者首次行ETV,其中185例(24.6%)患者在6个月内发生ETV失败。对于目标1,使用经典的ETVSS变量,机器学习模型的表现并不优于逻辑回归,Naïve贝叶斯(最高机器学习模型性能)的AUROC为0.60 (95% CI: 0.52-0.69),逻辑回归的AUROC为0.68 (95% CI: 0.60-0.76)。在纳入成像特征(目标2)后,机器学习模型的预测得到改善,但仍然不如上述逻辑回归,使用Naïve贝叶斯架构获得的最高AUROC为0.67 (95% CI: 0.59-0.75),而逻辑回归的AUROC为0.68 (95% CI: 0.59-0.76)。结论:这项当代多中心观察性队列研究表明,与逻辑回归相比,机器学习建模策略并没有提高ETVSS模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Does machine learning improve prediction accuracy of the Endoscopic Third Ventriculostomy Success Score? A contemporary Hydrocephalus Clinical Research Network cohort study.

Purpose: This Hydrocephalus Clinical Research Network (HCRN) study had two aims: (1) to compare the predictive performance of the original ETV Success Score (ETVSS) using logistic regression modeling with other newer machine learning models and (2) to assess whether inclusion of imaging variables improves prediction performance using machine learning models.

Methods: We identified children undergoing first-time ETV for hydrocephalus that were enrolled prospectively at HCRN sites between 200 and 2020. The primary outcome was ETV success 6 months after index surgery. The cohort was randomly divided into training (70%) and testing (30%) datasets. The classic ETVSS variables were used for logistic regression and machine learning models. Predictive performance of each model was evaluated on the testing dataset using area under the receiver operating characteristic curve (AUROC).

Results: There were 752 patients that underwent first time ETV, of which 185 patients (24.6%) experienced ETV failure within 6 months. For aim 1, using the classic ETVSS variables, machine learning models did not outperform logistic regression with AUROC 0.60 (95% CI: 0.52-0.69) for Naïve Bayes (highest machine learning model performance) and 0.68 (95% CI: 0.60-0.76) for logistic regression. After inclusion of imaging features (aim 2), machine learning model prediction improved but remained no better than the above logistic regression with the highest AUROC of 0.67 (95% CI: 0.59-0.75) attained using Naïve Bayes architecture compared to 0.68 (95% CI: 0.59-0.76) for logistic regression.

Conclusions: This contemporary multicenter observational cohort study demonstrated that machine learning modeling strategies did not improve performance of the ETVSS model over logistic regression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Child's Nervous System
Child's Nervous System 医学-临床神经学
CiteScore
3.00
自引率
7.10%
发文量
322
审稿时长
3 months
期刊介绍: The journal has been expanded to encompass all aspects of pediatric neurosciences concerning the developmental and acquired abnormalities of the nervous system and its coverings, functional disorders, epilepsy, spasticity, basic and clinical neuro-oncology, rehabilitation and trauma. Global pediatric neurosurgery is an additional field of interest that will be considered for publication in the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信