Jiaqin Jiang , Lipeng Liu , Lingqi Shen , Jian Li , Qiao Xu , Zuguang Li , Hongdeng Qiu
{"title":"co2响应切换深共晶溶剂基均相液-液微萃取法测定水中多氯联苯。","authors":"Jiaqin Jiang , Lipeng Liu , Lingqi Shen , Jian Li , Qiao Xu , Zuguang Li , Hongdeng Qiu","doi":"10.1016/j.chroma.2024.465583","DOIUrl":null,"url":null,"abstract":"<div><div>A homogeneous liquid-liquid microextraction technique based on switchable deep eutectic solvent (SDES-HLLME), combined with gas chromatography-triple quadrupole tandem mass spectrometry (GC–MS/MS), was developed for the extraction and analysis of 16 polychlorinated biphenyls (PCBs) in water samples. CO<sub>2</sub>-responsive switchable deep eutectic solvent (SDES), which consists of monoethanolamine (MEA) being used as a hydrogen bond acceptor (HBA) and 3-methoxyphenol (3-MP) being used as a hydrogen bond donor (HBD), was used as the extractant, thus providing an environmentally friendly alternative to conventional toxic organic solvents. The study systematically investigated the effects of various parameters on extraction efficiency, including the type and volume of SDES, vortexing duration, CO<sub>2</sub> bubbling time, centrifugation rate and time, ionic strength. Optimal extraction conditions were identified as follows: 40.0 μL of SDES, vortexing for 40.0 s, CO<sub>2</sub> bubbling for 2.0 min, 5.0 % (w/v) salt concentration, a centrifugation rate of 5000 rpm, and a centrifugation duration of 3.0 min. Under these optimal conditions, the method exhibited a linear range of 0.1–300 ng·mL<sup>−1</sup>, with limits of detection (LODs) and quantification (LOQs) ranging from 0.003 to 0.096 ng·mL<sup>−1</sup> and 0.009 to 0.321 ng·mL<sup>−1</sup>, while the relative standard deviation (RSD) <7.98 %. Finally, this method was successfully applied to determine the concentrations of 16 PCBs in various environmental water samples, yielding satisfactory recovery rates. This method provides a green, convenient and accurate new idea in the field of HLLME research.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1740 ","pages":"Article 465583"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of polychlorinated biphenyls in water by CO2-responsive switchable deep eutectic solvent based homogeneous liquid-liquid microextraction\",\"authors\":\"Jiaqin Jiang , Lipeng Liu , Lingqi Shen , Jian Li , Qiao Xu , Zuguang Li , Hongdeng Qiu\",\"doi\":\"10.1016/j.chroma.2024.465583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A homogeneous liquid-liquid microextraction technique based on switchable deep eutectic solvent (SDES-HLLME), combined with gas chromatography-triple quadrupole tandem mass spectrometry (GC–MS/MS), was developed for the extraction and analysis of 16 polychlorinated biphenyls (PCBs) in water samples. CO<sub>2</sub>-responsive switchable deep eutectic solvent (SDES), which consists of monoethanolamine (MEA) being used as a hydrogen bond acceptor (HBA) and 3-methoxyphenol (3-MP) being used as a hydrogen bond donor (HBD), was used as the extractant, thus providing an environmentally friendly alternative to conventional toxic organic solvents. The study systematically investigated the effects of various parameters on extraction efficiency, including the type and volume of SDES, vortexing duration, CO<sub>2</sub> bubbling time, centrifugation rate and time, ionic strength. Optimal extraction conditions were identified as follows: 40.0 μL of SDES, vortexing for 40.0 s, CO<sub>2</sub> bubbling for 2.0 min, 5.0 % (w/v) salt concentration, a centrifugation rate of 5000 rpm, and a centrifugation duration of 3.0 min. Under these optimal conditions, the method exhibited a linear range of 0.1–300 ng·mL<sup>−1</sup>, with limits of detection (LODs) and quantification (LOQs) ranging from 0.003 to 0.096 ng·mL<sup>−1</sup> and 0.009 to 0.321 ng·mL<sup>−1</sup>, while the relative standard deviation (RSD) <7.98 %. Finally, this method was successfully applied to determine the concentrations of 16 PCBs in various environmental water samples, yielding satisfactory recovery rates. This method provides a green, convenient and accurate new idea in the field of HLLME research.</div></div>\",\"PeriodicalId\":347,\"journal\":{\"name\":\"Journal of Chromatography A\",\"volume\":\"1740 \",\"pages\":\"Article 465583\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021967324009555\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324009555","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Determination of polychlorinated biphenyls in water by CO2-responsive switchable deep eutectic solvent based homogeneous liquid-liquid microextraction
A homogeneous liquid-liquid microextraction technique based on switchable deep eutectic solvent (SDES-HLLME), combined with gas chromatography-triple quadrupole tandem mass spectrometry (GC–MS/MS), was developed for the extraction and analysis of 16 polychlorinated biphenyls (PCBs) in water samples. CO2-responsive switchable deep eutectic solvent (SDES), which consists of monoethanolamine (MEA) being used as a hydrogen bond acceptor (HBA) and 3-methoxyphenol (3-MP) being used as a hydrogen bond donor (HBD), was used as the extractant, thus providing an environmentally friendly alternative to conventional toxic organic solvents. The study systematically investigated the effects of various parameters on extraction efficiency, including the type and volume of SDES, vortexing duration, CO2 bubbling time, centrifugation rate and time, ionic strength. Optimal extraction conditions were identified as follows: 40.0 μL of SDES, vortexing for 40.0 s, CO2 bubbling for 2.0 min, 5.0 % (w/v) salt concentration, a centrifugation rate of 5000 rpm, and a centrifugation duration of 3.0 min. Under these optimal conditions, the method exhibited a linear range of 0.1–300 ng·mL−1, with limits of detection (LODs) and quantification (LOQs) ranging from 0.003 to 0.096 ng·mL−1 and 0.009 to 0.321 ng·mL−1, while the relative standard deviation (RSD) <7.98 %. Finally, this method was successfully applied to determine the concentrations of 16 PCBs in various environmental water samples, yielding satisfactory recovery rates. This method provides a green, convenient and accurate new idea in the field of HLLME research.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.