α -螺旋作为残留偶极偶联分析蛋白的比对报告。

IF 1.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yang Shen, Marshall J Smith, John M Louis, Ad Bax
{"title":"α -螺旋作为残留偶极偶联分析蛋白的比对报告。","authors":"Yang Shen, Marshall J Smith, John M Louis, Ad Bax","doi":"10.1007/s10858-024-00456-5","DOIUrl":null,"url":null,"abstract":"<p><p>Inclusion of residual dipolar couplings (RDCs) during the early rounds of protein structure determination requires use of a floating alignment tensor or knowledge of the alignment tensor strength and rhombicity. For proteins with interdomain motion, such analysis can falsely hide the presence of domain dynamics. We demonstrate for three proteins, maltotriose-ligated maltose binding protein (MBP), Ca<sup>2+</sup>-ligated calmodulin, and a monomeric N-terminal deletion mutant of the SARS-CoV-2 Main Protease, MPro, that good alignment tensor estimates of their domains can be obtained from RDCs measured for residues that are identified as α-helical based on their chemical shifts. The program, Helix-Fit, fits the RDCs to idealized α-helical coordinates, often yielding a comparable or better alignment tensor estimate than fitting to the actual high-resolution X-ray helix coordinates. The 13 helices of ligated MBP all show very similar alignment tensors, indicative of a high degree of order relative to one another. By contrast, while for monomeric MPro the alignment strengths of the five helices in the C-terminal helical domain (residues 200-306) are very similar, pointing to a well-ordered domain, the single α-helix Y54-I59 in the N-terminal catalytic domain (residues 10-185) aligns considerably weaker. This result indicates the presence of large amplitude motions of either Y54-I59 or of the entire N-terminal domain relative to the C-terminal domain, contrasting with the high degree of order seen in the native homodimeric structure.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alpha-helices as alignment reporters in residual dipolar coupling analysis of proteins.\",\"authors\":\"Yang Shen, Marshall J Smith, John M Louis, Ad Bax\",\"doi\":\"10.1007/s10858-024-00456-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inclusion of residual dipolar couplings (RDCs) during the early rounds of protein structure determination requires use of a floating alignment tensor or knowledge of the alignment tensor strength and rhombicity. For proteins with interdomain motion, such analysis can falsely hide the presence of domain dynamics. We demonstrate for three proteins, maltotriose-ligated maltose binding protein (MBP), Ca<sup>2+</sup>-ligated calmodulin, and a monomeric N-terminal deletion mutant of the SARS-CoV-2 Main Protease, MPro, that good alignment tensor estimates of their domains can be obtained from RDCs measured for residues that are identified as α-helical based on their chemical shifts. The program, Helix-Fit, fits the RDCs to idealized α-helical coordinates, often yielding a comparable or better alignment tensor estimate than fitting to the actual high-resolution X-ray helix coordinates. The 13 helices of ligated MBP all show very similar alignment tensors, indicative of a high degree of order relative to one another. By contrast, while for monomeric MPro the alignment strengths of the five helices in the C-terminal helical domain (residues 200-306) are very similar, pointing to a well-ordered domain, the single α-helix Y54-I59 in the N-terminal catalytic domain (residues 10-185) aligns considerably weaker. This result indicates the presence of large amplitude motions of either Y54-I59 or of the entire N-terminal domain relative to the C-terminal domain, contrasting with the high degree of order seen in the native homodimeric structure.</p>\",\"PeriodicalId\":613,\"journal\":{\"name\":\"Journal of Biomolecular NMR\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular NMR\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10858-024-00456-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-024-00456-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在蛋白质结构测定的早期阶段,包含残余偶极偶联(rdc)需要使用浮动的对准张量或对对准张量强度和菱形的了解。对于具有结构域间运动的蛋白质,这种分析可能会错误地隐藏结构域动力学的存在。我们证明了三种蛋白质,麦芽糖连接麦芽糖结合蛋白(MBP), Ca2+连接钙调蛋白和SARS-CoV-2主要蛋白酶的单个n端缺失突变体MPro,可以从基于化学位移确定为α-螺旋的残基的rdc测量中获得良好的结构域对齐张量估计。该程序,helix - fit,将rdc拟合到理想的α-螺旋坐标,通常产生与拟合实际的高分辨率x射线螺旋坐标相当或更好的对准张量估计。结连的MBP的13个螺旋都显示出非常相似的排列张量,表明彼此之间的有序程度很高。相比之下,对于单体MPro,其c端螺旋结构域(残基200-306)的5个螺旋的排列强度非常相似,指向一个有序的结构域,而在n端催化结构域(残基10-185)的单个α-螺旋Y54-I59的排列强度要弱得多。这一结果表明,相对于c端结构,Y54-I59或整个n端结构域存在较大的振幅运动,这与天然同型二聚体结构的高度有序形成了对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alpha-helices as alignment reporters in residual dipolar coupling analysis of proteins.

Inclusion of residual dipolar couplings (RDCs) during the early rounds of protein structure determination requires use of a floating alignment tensor or knowledge of the alignment tensor strength and rhombicity. For proteins with interdomain motion, such analysis can falsely hide the presence of domain dynamics. We demonstrate for three proteins, maltotriose-ligated maltose binding protein (MBP), Ca2+-ligated calmodulin, and a monomeric N-terminal deletion mutant of the SARS-CoV-2 Main Protease, MPro, that good alignment tensor estimates of their domains can be obtained from RDCs measured for residues that are identified as α-helical based on their chemical shifts. The program, Helix-Fit, fits the RDCs to idealized α-helical coordinates, often yielding a comparable or better alignment tensor estimate than fitting to the actual high-resolution X-ray helix coordinates. The 13 helices of ligated MBP all show very similar alignment tensors, indicative of a high degree of order relative to one another. By contrast, while for monomeric MPro the alignment strengths of the five helices in the C-terminal helical domain (residues 200-306) are very similar, pointing to a well-ordered domain, the single α-helix Y54-I59 in the N-terminal catalytic domain (residues 10-185) aligns considerably weaker. This result indicates the presence of large amplitude motions of either Y54-I59 or of the entire N-terminal domain relative to the C-terminal domain, contrasting with the high degree of order seen in the native homodimeric structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular NMR
Journal of Biomolecular NMR 生物-光谱学
CiteScore
6.00
自引率
3.70%
发文量
19
审稿时长
6-12 weeks
期刊介绍: The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include: Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR. New NMR techniques for studies of biological macromolecules. Novel approaches to computer-aided automated analysis of multidimensional NMR spectra. Computational methods for the structural interpretation of NMR data, including structure refinement. Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals. New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信