Jiajie Zhu, Yuanbiao Tong, Zhenxin Wang, Zhiyong Li, Lei Zhang, Xin Guo, Limin Tong, Pan Wang
{"title":"金片状微型电容微天平。","authors":"Jiajie Zhu, Yuanbiao Tong, Zhenxin Wang, Zhiyong Li, Lei Zhang, Xin Guo, Limin Tong, Pan Wang","doi":"10.1002/smtd.202401640","DOIUrl":null,"url":null,"abstract":"<p>Measurement of masses of microscale objects or weak force with ultrahigh sensitivity (down to nanogram/piconewton level) and compact configuration is highly desired for fundamental research and applications in various disciplines. Here, by using freestanding gold flakes with high reflectivity (≈98% at 980 nm) as the sample tray and silica microfibers with extremely low spring constant (≈0.05 mN m<sup>−1</sup>) as the cantilever beams, miniature capacitive balances are reported with piconewton-level detection limit (picobalances) and reliable radiation force-based calibration. In the design, the gold flake is suspended by two silica microfibers, which also functions as an electrode to form a capacitor with an underneath gold electrode. Benefitting from the high reflectivity of the gold flake, the performance of picobalances can be precisely calibrated by exerting piconewton-level radiation pressure on the gold flake (working as a mirror) with a laser, showing a detection limit as low as 6.9 pN. Finally, using a fiber taper-assisted micromanipulation technique, masses of various types of pollens (with weights ranging from 4.6 to 96.3 ng) are readily measured by a picobalance at single-particle level. The miniature picobalances should find applications in precise measurement of masses of micro or nanoscale objects and various types of weak forces.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 7","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gold Flake-Enabled Miniature Capacitive Picobalances\",\"authors\":\"Jiajie Zhu, Yuanbiao Tong, Zhenxin Wang, Zhiyong Li, Lei Zhang, Xin Guo, Limin Tong, Pan Wang\",\"doi\":\"10.1002/smtd.202401640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Measurement of masses of microscale objects or weak force with ultrahigh sensitivity (down to nanogram/piconewton level) and compact configuration is highly desired for fundamental research and applications in various disciplines. Here, by using freestanding gold flakes with high reflectivity (≈98% at 980 nm) as the sample tray and silica microfibers with extremely low spring constant (≈0.05 mN m<sup>−1</sup>) as the cantilever beams, miniature capacitive balances are reported with piconewton-level detection limit (picobalances) and reliable radiation force-based calibration. In the design, the gold flake is suspended by two silica microfibers, which also functions as an electrode to form a capacitor with an underneath gold electrode. Benefitting from the high reflectivity of the gold flake, the performance of picobalances can be precisely calibrated by exerting piconewton-level radiation pressure on the gold flake (working as a mirror) with a laser, showing a detection limit as low as 6.9 pN. Finally, using a fiber taper-assisted micromanipulation technique, masses of various types of pollens (with weights ranging from 4.6 to 96.3 ng) are readily measured by a picobalance at single-particle level. The miniature picobalances should find applications in precise measurement of masses of micro or nanoscale objects and various types of weak forces.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\"9 7\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401640\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401640","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Measurement of masses of microscale objects or weak force with ultrahigh sensitivity (down to nanogram/piconewton level) and compact configuration is highly desired for fundamental research and applications in various disciplines. Here, by using freestanding gold flakes with high reflectivity (≈98% at 980 nm) as the sample tray and silica microfibers with extremely low spring constant (≈0.05 mN m−1) as the cantilever beams, miniature capacitive balances are reported with piconewton-level detection limit (picobalances) and reliable radiation force-based calibration. In the design, the gold flake is suspended by two silica microfibers, which also functions as an electrode to form a capacitor with an underneath gold electrode. Benefitting from the high reflectivity of the gold flake, the performance of picobalances can be precisely calibrated by exerting piconewton-level radiation pressure on the gold flake (working as a mirror) with a laser, showing a detection limit as low as 6.9 pN. Finally, using a fiber taper-assisted micromanipulation technique, masses of various types of pollens (with weights ranging from 4.6 to 96.3 ng) are readily measured by a picobalance at single-particle level. The miniature picobalances should find applications in precise measurement of masses of micro or nanoscale objects and various types of weak forces.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.