Menisha S. Karunarathna, Md Anisur Rahman, Guang Yang, Catalin Gainaru, Zoriana Demchuck, Christopher C. Bowland, Harry M. Meyer, Natasha Ghezawi and Tomonori Saito
{"title":"韧性和圆形玻璃纤维复合材料通过定制的动态硼酯界面。","authors":"Menisha S. Karunarathna, Md Anisur Rahman, Guang Yang, Catalin Gainaru, Zoriana Demchuck, Christopher C. Bowland, Harry M. Meyer, Natasha Ghezawi and Tomonori Saito","doi":"10.1039/D4MH01452A","DOIUrl":null,"url":null,"abstract":"<p >Glass fiber reinforced polymer (GFRP) composites are valued for their strength and cost-effectiveness. However, traditional GFRPs often face challenges for end-of-life recycling due to their non-depolymerizable thermoset matrices, and long-term performance due to inadequate interfacial adhesion, which can lead to fiber–matrix delamination. Here, we have designed dynamic fiber–matrix interfaces to allow tough and closed-loop recyclable GFRPs by utilizing a vitrimer, derived from upcycled polystyrene-<em>b</em>-poly(ethylene-<em>co</em>-butylene)-<em>b</em>-polystyrene (SEBS) with boronic ester (S-Bpin) and amine-based diol crosslinker. The boronic ester groups in S-Bpin form dynamic covalent bonds with the naturally present hydroxyl groups on the unsized GF surface, which eliminates the need for fiber sizing and enables facile closed-loop recyclability of both the fibers and the vitrimer matrix. The resulting strong fiber–matrix interface, depicted by the Raman mapping, leads to a 552% increase in-plane shear toughness (6.2 ± 0.3 MJ m<small><sup>−3</sup></small>) and 27% ultimate tensile strength (361 ± 89.2 MPa) compared to those of the conventional epoxy-based matrix (0.95 ± 0.05 MJ m<small><sup>−3</sup></small> and 264 ± 59.7 MPa, respectively). The network rearrangement through dynamic boronic ester exchange enables fast thermoformability and repairability of micro-cracks at elevated temperatures. Additionally, both the matrix and composite demonstrate strong adhesion to various surfaces including steel and glasses exhibiting ≥6 MPa lap shear strength, which expands their suitability for diverse industrial applications. The readily created dynamic interface between boronic ester functionalized vitrimer and neat GFs presents a promising strategy for developing closed-loop recyclable, multifunctional structural materials, offering a sustainable alternative to non-recyclable thermoset GFRPs and contributes to a circular economy in composite materials.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 3","pages":" 788-801"},"PeriodicalIF":12.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tough and circular glass fiber composites via a tailored dynamic boronic ester interface†‡\",\"authors\":\"Menisha S. Karunarathna, Md Anisur Rahman, Guang Yang, Catalin Gainaru, Zoriana Demchuck, Christopher C. Bowland, Harry M. Meyer, Natasha Ghezawi and Tomonori Saito\",\"doi\":\"10.1039/D4MH01452A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Glass fiber reinforced polymer (GFRP) composites are valued for their strength and cost-effectiveness. However, traditional GFRPs often face challenges for end-of-life recycling due to their non-depolymerizable thermoset matrices, and long-term performance due to inadequate interfacial adhesion, which can lead to fiber–matrix delamination. Here, we have designed dynamic fiber–matrix interfaces to allow tough and closed-loop recyclable GFRPs by utilizing a vitrimer, derived from upcycled polystyrene-<em>b</em>-poly(ethylene-<em>co</em>-butylene)-<em>b</em>-polystyrene (SEBS) with boronic ester (S-Bpin) and amine-based diol crosslinker. The boronic ester groups in S-Bpin form dynamic covalent bonds with the naturally present hydroxyl groups on the unsized GF surface, which eliminates the need for fiber sizing and enables facile closed-loop recyclability of both the fibers and the vitrimer matrix. The resulting strong fiber–matrix interface, depicted by the Raman mapping, leads to a 552% increase in-plane shear toughness (6.2 ± 0.3 MJ m<small><sup>−3</sup></small>) and 27% ultimate tensile strength (361 ± 89.2 MPa) compared to those of the conventional epoxy-based matrix (0.95 ± 0.05 MJ m<small><sup>−3</sup></small> and 264 ± 59.7 MPa, respectively). The network rearrangement through dynamic boronic ester exchange enables fast thermoformability and repairability of micro-cracks at elevated temperatures. Additionally, both the matrix and composite demonstrate strong adhesion to various surfaces including steel and glasses exhibiting ≥6 MPa lap shear strength, which expands their suitability for diverse industrial applications. The readily created dynamic interface between boronic ester functionalized vitrimer and neat GFs presents a promising strategy for developing closed-loop recyclable, multifunctional structural materials, offering a sustainable alternative to non-recyclable thermoset GFRPs and contributes to a circular economy in composite materials.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 3\",\"pages\":\" 788-801\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh01452a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh01452a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tough and circular glass fiber composites via a tailored dynamic boronic ester interface†‡
Glass fiber reinforced polymer (GFRP) composites are valued for their strength and cost-effectiveness. However, traditional GFRPs often face challenges for end-of-life recycling due to their non-depolymerizable thermoset matrices, and long-term performance due to inadequate interfacial adhesion, which can lead to fiber–matrix delamination. Here, we have designed dynamic fiber–matrix interfaces to allow tough and closed-loop recyclable GFRPs by utilizing a vitrimer, derived from upcycled polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) with boronic ester (S-Bpin) and amine-based diol crosslinker. The boronic ester groups in S-Bpin form dynamic covalent bonds with the naturally present hydroxyl groups on the unsized GF surface, which eliminates the need for fiber sizing and enables facile closed-loop recyclability of both the fibers and the vitrimer matrix. The resulting strong fiber–matrix interface, depicted by the Raman mapping, leads to a 552% increase in-plane shear toughness (6.2 ± 0.3 MJ m−3) and 27% ultimate tensile strength (361 ± 89.2 MPa) compared to those of the conventional epoxy-based matrix (0.95 ± 0.05 MJ m−3 and 264 ± 59.7 MPa, respectively). The network rearrangement through dynamic boronic ester exchange enables fast thermoformability and repairability of micro-cracks at elevated temperatures. Additionally, both the matrix and composite demonstrate strong adhesion to various surfaces including steel and glasses exhibiting ≥6 MPa lap shear strength, which expands their suitability for diverse industrial applications. The readily created dynamic interface between boronic ester functionalized vitrimer and neat GFs presents a promising strategy for developing closed-loop recyclable, multifunctional structural materials, offering a sustainable alternative to non-recyclable thermoset GFRPs and contributes to a circular economy in composite materials.