{"title":"通过cP-RNA-seq鉴定的tRNA反密码子环中血管生成素催化的切割。","authors":"Megumi Shigematsu, Ryuma Matsubara, Justin Gumas, Takuya Kawamura, Yohei Kirino","doi":"10.1093/bbb/zbae192","DOIUrl":null,"url":null,"abstract":"<p><p>Angiogenin (Ang), an endoribonuclease belonging to the RNase A superfamily, cleaves the anticodon-loops of tRNAs to produce tRNA half molecules. Although previous studies have demonstrated the involvement of Ang in the pathobiology of neurodegenerative disorders, the characterization of Ang-generated tRNA halves in neuronal cells remains limited. This is partly due to the technical limitations of standard RNA-seq methods, which cannot capture Ang-generated RNAs containing a 2',3'-cyclic phosphate (cP). In this report, we established an Ang treatment model using SH-SY5Y, a human neuroblastoma cell line, and demonstrated Ang-dependent accumulation of tRNA halves. By performing cP-RNA-seq, which selectively captures cP-containing RNAs, we identified Ang-generated tRNA halves and the specific cleavage positions within tRNA anticodon-loops responsible for their generation. Our results provide insights into the anticodon-loop cleavage and the selective production of a specific subset of tRNA halves by Ang.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angiogenin-catalyzed cleavage within tRNA anticodon-loops identified by cP-RNA-seq.\",\"authors\":\"Megumi Shigematsu, Ryuma Matsubara, Justin Gumas, Takuya Kawamura, Yohei Kirino\",\"doi\":\"10.1093/bbb/zbae192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Angiogenin (Ang), an endoribonuclease belonging to the RNase A superfamily, cleaves the anticodon-loops of tRNAs to produce tRNA half molecules. Although previous studies have demonstrated the involvement of Ang in the pathobiology of neurodegenerative disorders, the characterization of Ang-generated tRNA halves in neuronal cells remains limited. This is partly due to the technical limitations of standard RNA-seq methods, which cannot capture Ang-generated RNAs containing a 2',3'-cyclic phosphate (cP). In this report, we established an Ang treatment model using SH-SY5Y, a human neuroblastoma cell line, and demonstrated Ang-dependent accumulation of tRNA halves. By performing cP-RNA-seq, which selectively captures cP-containing RNAs, we identified Ang-generated tRNA halves and the specific cleavage positions within tRNA anticodon-loops responsible for their generation. Our results provide insights into the anticodon-loop cleavage and the selective production of a specific subset of tRNA halves by Ang.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae192\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae192","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Angiogenin-catalyzed cleavage within tRNA anticodon-loops identified by cP-RNA-seq.
Angiogenin (Ang), an endoribonuclease belonging to the RNase A superfamily, cleaves the anticodon-loops of tRNAs to produce tRNA half molecules. Although previous studies have demonstrated the involvement of Ang in the pathobiology of neurodegenerative disorders, the characterization of Ang-generated tRNA halves in neuronal cells remains limited. This is partly due to the technical limitations of standard RNA-seq methods, which cannot capture Ang-generated RNAs containing a 2',3'-cyclic phosphate (cP). In this report, we established an Ang treatment model using SH-SY5Y, a human neuroblastoma cell line, and demonstrated Ang-dependent accumulation of tRNA halves. By performing cP-RNA-seq, which selectively captures cP-containing RNAs, we identified Ang-generated tRNA halves and the specific cleavage positions within tRNA anticodon-loops responsible for their generation. Our results provide insights into the anticodon-loop cleavage and the selective production of a specific subset of tRNA halves by Ang.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).