无中断加速:DFT软件即服务。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2024-12-24 Epub Date: 2024-12-11 DOI:10.1021/acs.jctc.4c00940
Fusong Ju, Xinran Wei, Lin Huang, Andrew J Jenkins, Leo Xia, Jia Zhang, Jianwei Zhu, Han Yang, Bin Shao, Peggy Dai, David B Williams-Young, Ashwin Mayya, Zahra Hooshmand, Alexandra Efimovskaya, Nathan A Baker, Matthias Troyer, Hongbin Liu
{"title":"无中断加速:DFT软件即服务。","authors":"Fusong Ju, Xinran Wei, Lin Huang, Andrew J Jenkins, Leo Xia, Jia Zhang, Jianwei Zhu, Han Yang, Bin Shao, Peggy Dai, David B Williams-Young, Ashwin Mayya, Zahra Hooshmand, Alexandra Efimovskaya, Nathan A Baker, Matthias Troyer, Hongbin Liu","doi":"10.1021/acs.jctc.4c00940","DOIUrl":null,"url":null,"abstract":"<p><p>Density functional theory (DFT) has been a cornerstone in computational chemistry, physics, and materials science for decades, benefiting from advancements in computational power and theoretical methods. This paper introduces a novel, cloud-native application, Accelerated DFT, which offers an order of magnitude acceleration in DFT simulations. By integrating state-of-the-art cloud infrastructure and redesigning algorithms for graphic processing units (GPUs), Accelerated DFT achieves high-speed calculations without sacrificing accuracy. It provides a user-friendly and scalable solution for the increasing demands of DFT calculations in scientific communities. The implementation details, examples, and benchmark results illustrate how Accelerated DFT can significantly expedite scientific discovery across various domains.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10838-10851"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673099/pdf/","citationCount":"0","resultStr":"{\"title\":\"Acceleration without Disruption: DFT Software as a Service.\",\"authors\":\"Fusong Ju, Xinran Wei, Lin Huang, Andrew J Jenkins, Leo Xia, Jia Zhang, Jianwei Zhu, Han Yang, Bin Shao, Peggy Dai, David B Williams-Young, Ashwin Mayya, Zahra Hooshmand, Alexandra Efimovskaya, Nathan A Baker, Matthias Troyer, Hongbin Liu\",\"doi\":\"10.1021/acs.jctc.4c00940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Density functional theory (DFT) has been a cornerstone in computational chemistry, physics, and materials science for decades, benefiting from advancements in computational power and theoretical methods. This paper introduces a novel, cloud-native application, Accelerated DFT, which offers an order of magnitude acceleration in DFT simulations. By integrating state-of-the-art cloud infrastructure and redesigning algorithms for graphic processing units (GPUs), Accelerated DFT achieves high-speed calculations without sacrificing accuracy. It provides a user-friendly and scalable solution for the increasing demands of DFT calculations in scientific communities. The implementation details, examples, and benchmark results illustrate how Accelerated DFT can significantly expedite scientific discovery across various domains.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"10838-10851\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673099/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00940\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00940","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

密度泛函理论(DFT)几十年来一直是计算化学、物理和材料科学的基石,得益于计算能力和理论方法的进步。本文介绍了一种新的云原生应用,加速DFT,它为DFT模拟提供了一个数量级的加速。通过集成最先进的云基础设施和重新设计图形处理单元(gpu)算法,加速DFT在不牺牲精度的情况下实现了高速计算。它为科学界对DFT计算日益增长的需求提供了一个用户友好和可扩展的解决方案。实现细节、示例和基准测试结果说明了加速DFT如何显著加快跨各个领域的科学发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acceleration without Disruption: DFT Software as a Service.

Density functional theory (DFT) has been a cornerstone in computational chemistry, physics, and materials science for decades, benefiting from advancements in computational power and theoretical methods. This paper introduces a novel, cloud-native application, Accelerated DFT, which offers an order of magnitude acceleration in DFT simulations. By integrating state-of-the-art cloud infrastructure and redesigning algorithms for graphic processing units (GPUs), Accelerated DFT achieves high-speed calculations without sacrificing accuracy. It provides a user-friendly and scalable solution for the increasing demands of DFT calculations in scientific communities. The implementation details, examples, and benchmark results illustrate how Accelerated DFT can significantly expedite scientific discovery across various domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信