{"title":"通过原位相分离和增强相间结合强化明胶水凝胶,实现先进的三维制造技术","authors":"Chunling Ren, Wanqi Chen, Yun Liao, Yangguang Huang, Changlong Yu, Ting Chen, Qingmei Zeng, Yunlong Yang, Rongkun Huang, Tuan Liu, Li Jiang, Bingkun Bao, Linyong Zhu, Qiuning Lin","doi":"10.1002/adma.202416432","DOIUrl":null,"url":null,"abstract":"<p>Gelatin hydrogels (e.g., methacrylated gelatin gel, abbreviated GelMA gel) have garnered significant attention in tissue engineering and therapeutic drug and cell delivery due to their complete degradability and intrinsic ability to support cell adhesion. However, their practical applications are often constrained by their poor mechanical performance, which stems from their single network structure. This limitation poses significant challenges in load-bearing scenarios and restricts their use in advanced biofabrication technologies, where robust mechanical properties are essential. Here a hydrogel is developed composed entirely of gelatin using a phototriggered transient-radical and persistent-radical coupling (PTPC) reaction to achieve an optimized microstructure. This hydrogel features a phase-separated structure with enhanced interfacial bonding, significantly improving mechanical performance compared to conventional GelMA gels. Notably, this approach preserves the inherent properties of gelatin, including biocompatibility, cell adhesion, and degradability, thereby extending its applicability in the biomedical field, particularly in advanced biofabrication methods such as 3D printing. This approach offers a superior solution to meet the complex demands of sophisticated biomanufacturing technologies, expanding the potential applications of gelatin hydrogels in the biomedical field.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 6","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcing Gelatin Hydrogels via In Situ Phase Separation and Enhanced Interphase Bonding for Advanced 3D Fabrication\",\"authors\":\"Chunling Ren, Wanqi Chen, Yun Liao, Yangguang Huang, Changlong Yu, Ting Chen, Qingmei Zeng, Yunlong Yang, Rongkun Huang, Tuan Liu, Li Jiang, Bingkun Bao, Linyong Zhu, Qiuning Lin\",\"doi\":\"10.1002/adma.202416432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gelatin hydrogels (e.g., methacrylated gelatin gel, abbreviated GelMA gel) have garnered significant attention in tissue engineering and therapeutic drug and cell delivery due to their complete degradability and intrinsic ability to support cell adhesion. However, their practical applications are often constrained by their poor mechanical performance, which stems from their single network structure. This limitation poses significant challenges in load-bearing scenarios and restricts their use in advanced biofabrication technologies, where robust mechanical properties are essential. Here a hydrogel is developed composed entirely of gelatin using a phototriggered transient-radical and persistent-radical coupling (PTPC) reaction to achieve an optimized microstructure. This hydrogel features a phase-separated structure with enhanced interfacial bonding, significantly improving mechanical performance compared to conventional GelMA gels. Notably, this approach preserves the inherent properties of gelatin, including biocompatibility, cell adhesion, and degradability, thereby extending its applicability in the biomedical field, particularly in advanced biofabrication methods such as 3D printing. This approach offers a superior solution to meet the complex demands of sophisticated biomanufacturing technologies, expanding the potential applications of gelatin hydrogels in the biomedical field.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 6\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202416432\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202416432","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Reinforcing Gelatin Hydrogels via In Situ Phase Separation and Enhanced Interphase Bonding for Advanced 3D Fabrication
Gelatin hydrogels (e.g., methacrylated gelatin gel, abbreviated GelMA gel) have garnered significant attention in tissue engineering and therapeutic drug and cell delivery due to their complete degradability and intrinsic ability to support cell adhesion. However, their practical applications are often constrained by their poor mechanical performance, which stems from their single network structure. This limitation poses significant challenges in load-bearing scenarios and restricts their use in advanced biofabrication technologies, where robust mechanical properties are essential. Here a hydrogel is developed composed entirely of gelatin using a phototriggered transient-radical and persistent-radical coupling (PTPC) reaction to achieve an optimized microstructure. This hydrogel features a phase-separated structure with enhanced interfacial bonding, significantly improving mechanical performance compared to conventional GelMA gels. Notably, this approach preserves the inherent properties of gelatin, including biocompatibility, cell adhesion, and degradability, thereby extending its applicability in the biomedical field, particularly in advanced biofabrication methods such as 3D printing. This approach offers a superior solution to meet the complex demands of sophisticated biomanufacturing technologies, expanding the potential applications of gelatin hydrogels in the biomedical field.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.