{"title":"来自滑动铁电体畴壁波动的超导电性","authors":"Gaurav Chaudhary, Ivar Martin","doi":"10.1103/physrevlett.133.246001","DOIUrl":null,"url":null,"abstract":"Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons. The attraction is mediated by the ferroelectric domain wall fluctuations, effectively driven by the soft interlayer shear phonon. We comment on the possible relevance of this attraction mechanism to the recent observation of an interplay between sliding ferroelectricity and superconductivity in bilayer T</a:mi></a:mrow>d</a:mi></a:mrow></a:msub>−</a:mtext>MoTe</a:mtext></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow></a:math>. We also discuss the possible role of this mechanism in the superconductivity of moiré bilayers. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"20 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconductivity from Domain Wall Fluctuations in Sliding Ferroelectrics\",\"authors\":\"Gaurav Chaudhary, Ivar Martin\",\"doi\":\"10.1103/physrevlett.133.246001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons. The attraction is mediated by the ferroelectric domain wall fluctuations, effectively driven by the soft interlayer shear phonon. We comment on the possible relevance of this attraction mechanism to the recent observation of an interplay between sliding ferroelectricity and superconductivity in bilayer T</a:mi></a:mrow>d</a:mi></a:mrow></a:msub>−</a:mtext>MoTe</a:mtext></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow></a:math>. We also discuss the possible role of this mechanism in the superconductivity of moiré bilayers. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.133.246001\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.246001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Superconductivity from Domain Wall Fluctuations in Sliding Ferroelectrics
Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons. The attraction is mediated by the ferroelectric domain wall fluctuations, effectively driven by the soft interlayer shear phonon. We comment on the possible relevance of this attraction mechanism to the recent observation of an interplay between sliding ferroelectricity and superconductivity in bilayer Td−MoTe2. We also discuss the possible role of this mechanism in the superconductivity of moiré bilayers. Published by the American Physical Society2024
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks