双壁碳纳米管打破了离子选择性和透水性之间的平衡

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Tao Zhang, Zi Wang, Shuang Li, Xinke Zhang, Jiaye Su
{"title":"双壁碳纳米管打破了离子选择性和透水性之间的平衡","authors":"Tao Zhang, Zi Wang, Shuang Li, Xinke Zhang, Jiaye Su","doi":"10.1021/acs.langmuir.4c04185","DOIUrl":null,"url":null,"abstract":"Although evidence has been presented for desalination potentials in single-walled carbon nanotubes (SWCNTs), it is still very challenging to overcome the trade-off between ion selectivity and water permeability by simply tuning the carbon nanotube (CNT) size. In this work, we prove that double-walled carbon nanotubes (DWCNTs) can make it. Employing a series of molecular dynamics simulations, we find a striking phenomenon that tuning the combination architecture of DWCNTs can significantly improve the desalination performance, with the salt rejection rate even reaching 100% in some cases while maintaining high levels of water flux. Specifically, under a certain outer CNT (20,20), with the increase in inner CNT radius, the salt rejection rate reaches a maximum for the CNT (9,9), attributed to the small size of the inner CNT and the space between the two CNT walls that significantly impedes the ion passage; however, it still allows the passage of massive water. Furthermore, as the pressure difference increases, the water flux greatly increases, while the salt rejection rate only slightly decreases for the CNTs (8,8) and (9,9), effectively addressing the trade-off between ion selectivity and water permeability. As a result, optimizing the architecture of DWCNTs should be an effective strategy for designing an efficient desalination membrane, which is still a challenge for SWCNTs.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"49 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-Walled Carbon Nanotubes Enable Breakdown of the Trade-off between Ion Selectivity and Water Permeability\",\"authors\":\"Tao Zhang, Zi Wang, Shuang Li, Xinke Zhang, Jiaye Su\",\"doi\":\"10.1021/acs.langmuir.4c04185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although evidence has been presented for desalination potentials in single-walled carbon nanotubes (SWCNTs), it is still very challenging to overcome the trade-off between ion selectivity and water permeability by simply tuning the carbon nanotube (CNT) size. In this work, we prove that double-walled carbon nanotubes (DWCNTs) can make it. Employing a series of molecular dynamics simulations, we find a striking phenomenon that tuning the combination architecture of DWCNTs can significantly improve the desalination performance, with the salt rejection rate even reaching 100% in some cases while maintaining high levels of water flux. Specifically, under a certain outer CNT (20,20), with the increase in inner CNT radius, the salt rejection rate reaches a maximum for the CNT (9,9), attributed to the small size of the inner CNT and the space between the two CNT walls that significantly impedes the ion passage; however, it still allows the passage of massive water. Furthermore, as the pressure difference increases, the water flux greatly increases, while the salt rejection rate only slightly decreases for the CNTs (8,8) and (9,9), effectively addressing the trade-off between ion selectivity and water permeability. As a result, optimizing the architecture of DWCNTs should be an effective strategy for designing an efficient desalination membrane, which is still a challenge for SWCNTs.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c04185\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04185","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管已经有证据表明单壁碳纳米管(SWCNTs)具有脱盐潜力,但通过简单调整碳纳米管(CNT)的尺寸来克服离子选择性和水渗透性之间的权衡仍然是非常具有挑战性的。在这项工作中,我们证明了双壁碳纳米管(DWCNTs)可以做到这一点。通过一系列分子动力学模拟,我们发现了一个惊人的现象,即调整DWCNTs的组合结构可以显著提高脱盐性能,在某些情况下,在保持高水通量的情况下,脱盐率甚至达到100%。具体来说,在一定的外碳纳米管(20,20)下,随着内碳纳米管半径的增加,碳纳米管的阻盐率达到最大值(9,9),这归因于内碳纳米管的小尺寸和两个碳纳米管壁之间的空间显著阻碍了离子的通过;然而,它仍然允许大量的水通过。此外,随着压差的增加,水通量大大增加,而碳纳米管(8,8)和(9,9)的阻盐率仅略有下降,有效地解决了离子选择性和水渗透性之间的权衡。因此,优化DWCNTs的结构应该是设计高效脱盐膜的有效策略,这仍然是SWCNTs面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Double-Walled Carbon Nanotubes Enable Breakdown of the Trade-off between Ion Selectivity and Water Permeability

Double-Walled Carbon Nanotubes Enable Breakdown of the Trade-off between Ion Selectivity and Water Permeability
Although evidence has been presented for desalination potentials in single-walled carbon nanotubes (SWCNTs), it is still very challenging to overcome the trade-off between ion selectivity and water permeability by simply tuning the carbon nanotube (CNT) size. In this work, we prove that double-walled carbon nanotubes (DWCNTs) can make it. Employing a series of molecular dynamics simulations, we find a striking phenomenon that tuning the combination architecture of DWCNTs can significantly improve the desalination performance, with the salt rejection rate even reaching 100% in some cases while maintaining high levels of water flux. Specifically, under a certain outer CNT (20,20), with the increase in inner CNT radius, the salt rejection rate reaches a maximum for the CNT (9,9), attributed to the small size of the inner CNT and the space between the two CNT walls that significantly impedes the ion passage; however, it still allows the passage of massive water. Furthermore, as the pressure difference increases, the water flux greatly increases, while the salt rejection rate only slightly decreases for the CNTs (8,8) and (9,9), effectively addressing the trade-off between ion selectivity and water permeability. As a result, optimizing the architecture of DWCNTs should be an effective strategy for designing an efficient desalination membrane, which is still a challenge for SWCNTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信