节能集成电光忆阻器

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuhan He, Nikolaos Farmakidis, Samarth Aggarwal, Bowei Dong, June Sang Lee, Mengyun Wang, Yi Zhang, Francesca Parmigiani, Harish Bhaskaran
{"title":"节能集成电光忆阻器","authors":"Yuhan He, Nikolaos Farmakidis, Samarth Aggarwal, Bowei Dong, June Sang Lee, Mengyun Wang, Yi Zhang, Francesca Parmigiani, Harish Bhaskaran","doi":"10.1021/acs.nanolett.4c04567","DOIUrl":null,"url":null,"abstract":"Neuromorphic photonic processors are redefining the boundaries of classical computing by enabling high-speed multidimensional information processing within the memory. Memristors, the backbone of neuromorphic processors, retain their state after programming without static power consumption. Among them, electro-optic memristors are of great interest, as they enable dual electrical–optical functionality that bridges the efficiency of electronics and the bandwidth of photonics. However, efficient, scalable, and CMOS-compatible implementations of electro-optic memristors are still lacking. Here, we devise electro-optic memristors by structuring the phase-change material as a nanoscale constriction, geometrically confining the electrically generated heat profile to overlap with the optical field, thus achieving programmability and readability in both the electrical and optical domains. We demonstrate sub-10 pJ electrical switching energy and a high electro-optical modulation efficiency of 0.15 nJ/dB. Our work opens up opportunities for high-performance and energy-efficient integrated electro-optic neuromorphic computing.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient Integrated Electro-Optic Memristors\",\"authors\":\"Yuhan He, Nikolaos Farmakidis, Samarth Aggarwal, Bowei Dong, June Sang Lee, Mengyun Wang, Yi Zhang, Francesca Parmigiani, Harish Bhaskaran\",\"doi\":\"10.1021/acs.nanolett.4c04567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic photonic processors are redefining the boundaries of classical computing by enabling high-speed multidimensional information processing within the memory. Memristors, the backbone of neuromorphic processors, retain their state after programming without static power consumption. Among them, electro-optic memristors are of great interest, as they enable dual electrical–optical functionality that bridges the efficiency of electronics and the bandwidth of photonics. However, efficient, scalable, and CMOS-compatible implementations of electro-optic memristors are still lacking. Here, we devise electro-optic memristors by structuring the phase-change material as a nanoscale constriction, geometrically confining the electrically generated heat profile to overlap with the optical field, thus achieving programmability and readability in both the electrical and optical domains. We demonstrate sub-10 pJ electrical switching energy and a high electro-optical modulation efficiency of 0.15 nJ/dB. Our work opens up opportunities for high-performance and energy-efficient integrated electro-optic neuromorphic computing.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04567\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04567","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

神经形态光子处理器通过在存储器中实现高速多维信息处理,重新定义了经典计算的边界。记忆电阻器是神经形态处理器的骨干,在编程后保持其状态,不需要静态功耗。其中,电光忆阻器引起了人们的极大兴趣,因为它们能够实现双电光功能,将电子学的效率和光子学的带宽连接起来。然而,电光忆阻器的高效、可扩展和cmos兼容的实现仍然缺乏。在这里,我们设计了电光忆阻器,通过将相变材料结构为纳米级收缩,几何上限制了电产生的热分布,使其与光场重叠,从而在电学和光学领域都实现了可编程性和可读性。我们证明了低于10 pJ的电开关能量和0.15 nJ/dB的高电光调制效率。我们的工作为高性能和节能的集成电光神经形态计算开辟了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Energy-Efficient Integrated Electro-Optic Memristors

Energy-Efficient Integrated Electro-Optic Memristors
Neuromorphic photonic processors are redefining the boundaries of classical computing by enabling high-speed multidimensional information processing within the memory. Memristors, the backbone of neuromorphic processors, retain their state after programming without static power consumption. Among them, electro-optic memristors are of great interest, as they enable dual electrical–optical functionality that bridges the efficiency of electronics and the bandwidth of photonics. However, efficient, scalable, and CMOS-compatible implementations of electro-optic memristors are still lacking. Here, we devise electro-optic memristors by structuring the phase-change material as a nanoscale constriction, geometrically confining the electrically generated heat profile to overlap with the optical field, thus achieving programmability and readability in both the electrical and optical domains. We demonstrate sub-10 pJ electrical switching energy and a high electro-optical modulation efficiency of 0.15 nJ/dB. Our work opens up opportunities for high-performance and energy-efficient integrated electro-optic neuromorphic computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信