IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Xi-ao Yan, Gang Huang, Qitao Tan, Jing Sun, Qiang Fang
{"title":"Knowing How to Make Molecular Glasses as Low Dielectric Materials at High Frequency","authors":"Xi-ao Yan, Gang Huang, Qitao Tan, Jing Sun, Qiang Fang","doi":"10.1016/j.polymer.2024.127933","DOIUrl":null,"url":null,"abstract":"Two functional monomers containing thermo-crosslinkable benzocyclobutene and allyl groups and a bisphenol unit as a linker have been successfully synthesized. Powder X-ray diffraction indicates the monomers keep a complete amorphous state. DSC traces exhibit that the monomers have no melting point while display glass transition. Casting the solutions of the monomers in toluene into the surface of glass sheets forms smooth films. These data imply these monomers are molecular glasses due to their typical glass-forming behavior. Thermally cross-linked products based on the monomers exhibit good dielectric properties and low water uptake. Among these cross-linked monomers, the fluoro-containing resin displays better properties with a dielectric constant (<em>D</em><sub>k</sub>) of 2.74 and a dielectric loss (<em>D</em><sub>f</sub>) of 1.89×10<sup>-3</sup> at a frequency of 10 GHz, as well as exhibits a water uptake of 0.34 %. A control test indicates that the chemical structure of the bisphenol linker plays a crucial role for the formation of molecular glasses. When the linker is a rigid rod unit such as biphenyl group, the molecule does not exhibit molecular glass characteristics.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"37 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127933","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

成功合成了两种功能性单体,它们含有可热交联的苯并环丁烯和烯丙基基团,以及作为连接剂的双酚单元。粉末 X 射线衍射表明单体保持完全无定形状态。DSC 曲线显示单体没有熔点,但有玻璃化转变。将单体在甲苯中的溶液浇铸到玻璃片表面可形成光滑的薄膜。这些数据表明,这些单体具有典型的玻璃形成行为,因此是分子玻璃。基于这些单体的热交联产品具有良好的介电性能和低吸水性。在这些交联单体中,含氟树脂具有更好的性能,在 10 GHz 频率下介电常数(Dk)为 2.74,介电损耗(Df)为 1.89×10-3,吸水率为 0.34%。对照测试表明,双酚连接体的化学结构对分子玻璃的形成起着至关重要的作用。当连接体为刚性杆状单元(如联苯基)时,分子不会表现出分子玻璃的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Knowing How to Make Molecular Glasses as Low Dielectric Materials at High Frequency

Knowing How to Make Molecular Glasses as Low Dielectric Materials at High Frequency
Two functional monomers containing thermo-crosslinkable benzocyclobutene and allyl groups and a bisphenol unit as a linker have been successfully synthesized. Powder X-ray diffraction indicates the monomers keep a complete amorphous state. DSC traces exhibit that the monomers have no melting point while display glass transition. Casting the solutions of the monomers in toluene into the surface of glass sheets forms smooth films. These data imply these monomers are molecular glasses due to their typical glass-forming behavior. Thermally cross-linked products based on the monomers exhibit good dielectric properties and low water uptake. Among these cross-linked monomers, the fluoro-containing resin displays better properties with a dielectric constant (Dk) of 2.74 and a dielectric loss (Df) of 1.89×10-3 at a frequency of 10 GHz, as well as exhibits a water uptake of 0.34 %. A control test indicates that the chemical structure of the bisphenol linker plays a crucial role for the formation of molecular glasses. When the linker is a rigid rod unit such as biphenyl group, the molecule does not exhibit molecular glass characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信