{"title":"MOCVD生长的β-Ga2O3具有快速生长速率(>4.3 μm/h)、低可控掺杂和优越的输运性能","authors":"Dong Su Yu, Lingyu Meng, Hongping Zhao","doi":"10.1063/5.0238094","DOIUrl":null,"url":null,"abstract":"Si-doped β-phase (010) Ga2O3 epi-films with fast growth rates were comprehensively investigated using trimethylgallium (TMGa) as the Ga precursor via metalorganic chemical vapor deposition (MOCVD). Two main challenges facing the MOCVD growth of thick (010) β-Ga2O3 films with fast growth rates include high impurity carbon (C) incorporation and rough surface morphologies due to the formation of imbedded 3D pyramid-shaped structures. In this work, two different categories of oxygen source (high-purity O2 > 99.9999% and O2* with 10 ppm of [H2O]) were used for β-Ga2O3 MOCVD growth. Our study revealed that the size and density of the 3D defects in the β-Ga2O3 epi-films were significantly reduced when the O2* was used. In addition, the use of off-axis (010) Ga2O3 substrates with 2° off-cut angle leads to further reduction of defect formation in β-Ga2O3 with fast growth rates. To suppress C incorporation in MOCVD β-Ga2O3 grown with high TMGa flow rates, our findings indicate that high O2 (or O2*) flow rates are essential. Superior room temperature electron mobilities as high as 110–190 cm2/V·s were achieved for β-Ga2O3 grown using O2* (2000 sccm) with a growth rate of 4.5 μm/h (film thickness of 6.3 μm) within the doping range of 1.3 × 1018–7 × 1015 cm−3. The C incorporation is significantly suppressed from ∼1018 cm−3 to <5 × 1016 cm−3 ([C] detection limit) for β-Ga2O3 grown using high O2 (O2*) flow rate of 2000 sccm. Results from this work will provide guidance on developing high-quality, thick β-Ga2O3 films required for high power electronic devices with vertical configurations.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"25 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOCVD growth of β-Ga2O3 with fast growth rates (>4.3 μm/h), low controllable doping, and superior transport properties\",\"authors\":\"Dong Su Yu, Lingyu Meng, Hongping Zhao\",\"doi\":\"10.1063/5.0238094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Si-doped β-phase (010) Ga2O3 epi-films with fast growth rates were comprehensively investigated using trimethylgallium (TMGa) as the Ga precursor via metalorganic chemical vapor deposition (MOCVD). Two main challenges facing the MOCVD growth of thick (010) β-Ga2O3 films with fast growth rates include high impurity carbon (C) incorporation and rough surface morphologies due to the formation of imbedded 3D pyramid-shaped structures. In this work, two different categories of oxygen source (high-purity O2 > 99.9999% and O2* with 10 ppm of [H2O]) were used for β-Ga2O3 MOCVD growth. Our study revealed that the size and density of the 3D defects in the β-Ga2O3 epi-films were significantly reduced when the O2* was used. In addition, the use of off-axis (010) Ga2O3 substrates with 2° off-cut angle leads to further reduction of defect formation in β-Ga2O3 with fast growth rates. To suppress C incorporation in MOCVD β-Ga2O3 grown with high TMGa flow rates, our findings indicate that high O2 (or O2*) flow rates are essential. Superior room temperature electron mobilities as high as 110–190 cm2/V·s were achieved for β-Ga2O3 grown using O2* (2000 sccm) with a growth rate of 4.5 μm/h (film thickness of 6.3 μm) within the doping range of 1.3 × 1018–7 × 1015 cm−3. The C incorporation is significantly suppressed from ∼1018 cm−3 to <5 × 1016 cm−3 ([C] detection limit) for β-Ga2O3 grown using high O2 (O2*) flow rate of 2000 sccm. Results from this work will provide guidance on developing high-quality, thick β-Ga2O3 films required for high power electronic devices with vertical configurations.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0238094\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0238094","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
MOCVD growth of β-Ga2O3 with fast growth rates (>4.3 μm/h), low controllable doping, and superior transport properties
Si-doped β-phase (010) Ga2O3 epi-films with fast growth rates were comprehensively investigated using trimethylgallium (TMGa) as the Ga precursor via metalorganic chemical vapor deposition (MOCVD). Two main challenges facing the MOCVD growth of thick (010) β-Ga2O3 films with fast growth rates include high impurity carbon (C) incorporation and rough surface morphologies due to the formation of imbedded 3D pyramid-shaped structures. In this work, two different categories of oxygen source (high-purity O2 > 99.9999% and O2* with 10 ppm of [H2O]) were used for β-Ga2O3 MOCVD growth. Our study revealed that the size and density of the 3D defects in the β-Ga2O3 epi-films were significantly reduced when the O2* was used. In addition, the use of off-axis (010) Ga2O3 substrates with 2° off-cut angle leads to further reduction of defect formation in β-Ga2O3 with fast growth rates. To suppress C incorporation in MOCVD β-Ga2O3 grown with high TMGa flow rates, our findings indicate that high O2 (or O2*) flow rates are essential. Superior room temperature electron mobilities as high as 110–190 cm2/V·s were achieved for β-Ga2O3 grown using O2* (2000 sccm) with a growth rate of 4.5 μm/h (film thickness of 6.3 μm) within the doping range of 1.3 × 1018–7 × 1015 cm−3. The C incorporation is significantly suppressed from ∼1018 cm−3 to <5 × 1016 cm−3 ([C] detection limit) for β-Ga2O3 grown using high O2 (O2*) flow rate of 2000 sccm. Results from this work will provide guidance on developing high-quality, thick β-Ga2O3 films required for high power electronic devices with vertical configurations.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.