Zhenyuan Fu , Jing Zhong , Lixia Lin , Jiahui Yang , Yichen Xiao , Lei Li , Jing Zhang , Jin Yuan
{"title":"通过多组学和MALDI-MSI分析解读真菌性角膜炎中S1P下调和鞘脂稳态破坏。","authors":"Zhenyuan Fu , Jing Zhong , Lixia Lin , Jiahui Yang , Yichen Xiao , Lei Li , Jing Zhang , Jin Yuan","doi":"10.1016/j.jtos.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>The absence of effective treatment strategies in Fungal Keratitis (FK) emphasizes the critical need to understand the pathogenic mechanisms to enhance therapeutic outcomes. Sphingolipids have been proved to play a pivotal role in the pathogenesis of fungal infections, but the specific alteration in sphingolipids and regulatory pathways remain elusive. Our aim is to gain insight into the pathophysiological mechanisms of sphingolipid homeostasis in FK through multi-omics analysis.</div></div><div><h3>Methods</h3><div>Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was performed in FK patients and mouse model. Furthermore, time-course RNA-seq was performed and Weighted gene co-expression network analysis (WGCNA) was used to reveal the driver genes in FK. We further investigated the effect of FTY-720, a mimetic of sphingosine 1-phosphate (S1P), on the progression of FK.</div></div><div><h3>Results</h3><div>MALDI-MSI analysis of FK patients revealed a downregulation of sphingolipids, with sphingolipid metabolism identified as the most prominently enriched pathway. These alterations were validated in mouse model, in which S1P, ceramide, ceramide 1-phosphate and sphingomyelin were found to be downregulated. Time-course transcriptomic analysis suggests that degradation of sphingolipids by specific enzymes drives the progression of FK, involving phospholipid degradation, downregulation of TOR pathway, and activation of innate immune response. Consequently, epithelial cell function was inhibited and cell death increased. Importantly, restoring sphingolipid homeostasis by FTY-720 reversed the level of S1P and relieved the progression of FK.</div></div><div><h3>Conclusion</h3><div>In summary, this study reveals that disruption of sphingolipid homeostasis promotes disease progression in FK. Furthermore, restoring sphingolipid homeostasis emerges as a promising strategy to mitigate the progression of FK.</div></div>","PeriodicalId":54691,"journal":{"name":"Ocular Surface","volume":"35 ","pages":"Pages 83-96"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering S1P downregulation and sphingolipid homeostasis disruption in fungal keratitis via multi-omics and MALDI-MSI analysis\",\"authors\":\"Zhenyuan Fu , Jing Zhong , Lixia Lin , Jiahui Yang , Yichen Xiao , Lei Li , Jing Zhang , Jin Yuan\",\"doi\":\"10.1016/j.jtos.2024.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>The absence of effective treatment strategies in Fungal Keratitis (FK) emphasizes the critical need to understand the pathogenic mechanisms to enhance therapeutic outcomes. Sphingolipids have been proved to play a pivotal role in the pathogenesis of fungal infections, but the specific alteration in sphingolipids and regulatory pathways remain elusive. Our aim is to gain insight into the pathophysiological mechanisms of sphingolipid homeostasis in FK through multi-omics analysis.</div></div><div><h3>Methods</h3><div>Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was performed in FK patients and mouse model. Furthermore, time-course RNA-seq was performed and Weighted gene co-expression network analysis (WGCNA) was used to reveal the driver genes in FK. We further investigated the effect of FTY-720, a mimetic of sphingosine 1-phosphate (S1P), on the progression of FK.</div></div><div><h3>Results</h3><div>MALDI-MSI analysis of FK patients revealed a downregulation of sphingolipids, with sphingolipid metabolism identified as the most prominently enriched pathway. These alterations were validated in mouse model, in which S1P, ceramide, ceramide 1-phosphate and sphingomyelin were found to be downregulated. Time-course transcriptomic analysis suggests that degradation of sphingolipids by specific enzymes drives the progression of FK, involving phospholipid degradation, downregulation of TOR pathway, and activation of innate immune response. Consequently, epithelial cell function was inhibited and cell death increased. Importantly, restoring sphingolipid homeostasis by FTY-720 reversed the level of S1P and relieved the progression of FK.</div></div><div><h3>Conclusion</h3><div>In summary, this study reveals that disruption of sphingolipid homeostasis promotes disease progression in FK. Furthermore, restoring sphingolipid homeostasis emerges as a promising strategy to mitigate the progression of FK.</div></div>\",\"PeriodicalId\":54691,\"journal\":{\"name\":\"Ocular Surface\",\"volume\":\"35 \",\"pages\":\"Pages 83-96\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocular Surface\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1542012424001368\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocular Surface","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1542012424001368","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Deciphering S1P downregulation and sphingolipid homeostasis disruption in fungal keratitis via multi-omics and MALDI-MSI analysis
Purpose
The absence of effective treatment strategies in Fungal Keratitis (FK) emphasizes the critical need to understand the pathogenic mechanisms to enhance therapeutic outcomes. Sphingolipids have been proved to play a pivotal role in the pathogenesis of fungal infections, but the specific alteration in sphingolipids and regulatory pathways remain elusive. Our aim is to gain insight into the pathophysiological mechanisms of sphingolipid homeostasis in FK through multi-omics analysis.
Methods
Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was performed in FK patients and mouse model. Furthermore, time-course RNA-seq was performed and Weighted gene co-expression network analysis (WGCNA) was used to reveal the driver genes in FK. We further investigated the effect of FTY-720, a mimetic of sphingosine 1-phosphate (S1P), on the progression of FK.
Results
MALDI-MSI analysis of FK patients revealed a downregulation of sphingolipids, with sphingolipid metabolism identified as the most prominently enriched pathway. These alterations were validated in mouse model, in which S1P, ceramide, ceramide 1-phosphate and sphingomyelin were found to be downregulated. Time-course transcriptomic analysis suggests that degradation of sphingolipids by specific enzymes drives the progression of FK, involving phospholipid degradation, downregulation of TOR pathway, and activation of innate immune response. Consequently, epithelial cell function was inhibited and cell death increased. Importantly, restoring sphingolipid homeostasis by FTY-720 reversed the level of S1P and relieved the progression of FK.
Conclusion
In summary, this study reveals that disruption of sphingolipid homeostasis promotes disease progression in FK. Furthermore, restoring sphingolipid homeostasis emerges as a promising strategy to mitigate the progression of FK.
期刊介绍:
The Ocular Surface, a quarterly, a peer-reviewed journal, is an authoritative resource that integrates and interprets major findings in diverse fields related to the ocular surface, including ophthalmology, optometry, genetics, molecular biology, pharmacology, immunology, infectious disease, and epidemiology. Its critical review articles cover the most current knowledge on medical and surgical management of ocular surface pathology, new understandings of ocular surface physiology, the meaning of recent discoveries on how the ocular surface responds to injury and disease, and updates on drug and device development. The journal also publishes select original research reports and articles describing cutting-edge techniques and technology in the field.
Benefits to authors
We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.
Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center