Guido Marco Cicchini, Giovanni D'Errico, David Charles Burr
{"title":"色彩拥挤被认为是适应性空间整合。","authors":"Guido Marco Cicchini, Giovanni D'Errico, David Charles Burr","doi":"10.1167/jov.24.13.9","DOIUrl":null,"url":null,"abstract":"<p><p>Crowding is the inability to recognize an object in clutter, classically considered a fundamental low-level bottleneck to object recognition. Recently, however, it has been suggested that crowding, like predictive phenomena such as serial dependence, may result from optimizing strategies that exploit redundancies in natural scenes. This notion leads to several testable predictions, such as crowding being greater for nonsalient targets and, counterintuitively, that flanker interference should be associated with higher precision in judgements, leading to a lower overall error rate. Here we measured color discrimination for targets flanked by stimuli of variable color. The results verified both predictions, showing that although crowding can affect object recognition, it may be better understood not as a processing bottleneck, but rather as a consequence of mechanisms evolved to efficiently exploit the spatial redundancies of the natural world. Analyses of reaction times of judgments shows that the integration occurs at sensory rather than decisional levels.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"24 13","pages":"9"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636666/pdf/","citationCount":"0","resultStr":"{\"title\":\"Color crowding considered as adaptive spatial integration.\",\"authors\":\"Guido Marco Cicchini, Giovanni D'Errico, David Charles Burr\",\"doi\":\"10.1167/jov.24.13.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crowding is the inability to recognize an object in clutter, classically considered a fundamental low-level bottleneck to object recognition. Recently, however, it has been suggested that crowding, like predictive phenomena such as serial dependence, may result from optimizing strategies that exploit redundancies in natural scenes. This notion leads to several testable predictions, such as crowding being greater for nonsalient targets and, counterintuitively, that flanker interference should be associated with higher precision in judgements, leading to a lower overall error rate. Here we measured color discrimination for targets flanked by stimuli of variable color. The results verified both predictions, showing that although crowding can affect object recognition, it may be better understood not as a processing bottleneck, but rather as a consequence of mechanisms evolved to efficiently exploit the spatial redundancies of the natural world. Analyses of reaction times of judgments shows that the integration occurs at sensory rather than decisional levels.</p>\",\"PeriodicalId\":49955,\"journal\":{\"name\":\"Journal of Vision\",\"volume\":\"24 13\",\"pages\":\"9\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636666/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/jov.24.13.9\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.24.13.9","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Color crowding considered as adaptive spatial integration.
Crowding is the inability to recognize an object in clutter, classically considered a fundamental low-level bottleneck to object recognition. Recently, however, it has been suggested that crowding, like predictive phenomena such as serial dependence, may result from optimizing strategies that exploit redundancies in natural scenes. This notion leads to several testable predictions, such as crowding being greater for nonsalient targets and, counterintuitively, that flanker interference should be associated with higher precision in judgements, leading to a lower overall error rate. Here we measured color discrimination for targets flanked by stimuli of variable color. The results verified both predictions, showing that although crowding can affect object recognition, it may be better understood not as a processing bottleneck, but rather as a consequence of mechanisms evolved to efficiently exploit the spatial redundancies of the natural world. Analyses of reaction times of judgments shows that the integration occurs at sensory rather than decisional levels.
期刊介绍:
Exploring all aspects of biological visual function, including spatial vision, perception,
low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.