{"title":"调节因子X1通过BECN1的转录调控促进索拉非尼诱导的肝癌铁下垂。","authors":"Zhiwen Yang, Yichuan Yuan, Yi Niu, Dinglan Zuo, Wenwu Liu, Kai Li, Yunxing Shi, Zhiyu Qiu, Keren Li, Zhu Lin, Chengrui Zhong, Zhenkun Huang, Wei He, Xinyuan Guan, Yunfei Yuan, Weian Zeng, Jiliang Qiu, Binkui Li","doi":"10.1007/s13402-024-01017-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sorafenib is a commonly used first-line kinase-targeted drug for advanced hepatocellular carcinoma (HCC) patients suffering from limited efficacy. Emerging evidence indicates that sorafenib exerts anti-cancer activity through the induction of ferroptosis in HCC cells, but the underlying mechanism is still unclear.</p><p><strong>Methods: </strong>The whole transcriptome sequencing and bioinformatics analysis were used to screen for target genes. The expression and subcellular localization of regulatory factor X1 (RFX1) were determined through immunohistochemistry, immunofluorescence, PCR and western blot analyses. The impact of RFX1 on HCC cell growth was assessed using CCK8, colony formation assays, cell death assays, and animal experiments. Glutathione measurement, iron assay and lipid peroxidation detection assays were performed to investigate ferroptosis of HCC cells. The regulatory mechanism of RFX1 in HCC was investigated by sgRFX1, co-IP, ChIP and luciferase experiments. Immunohistochemical and survival analyses were performed to examine the prognostic significance of RFX1 in HCC.</p><p><strong>Results: </strong>In this study, we found that RFX1 promote ferroptosis in HCC cells. Further, we showed that sorafenib induces cell death through RFX1-mediated ferroptosis in HCC cells. The enhancing effect of RFX1 on HCC cell ferroptosis is largely dependent on inhibition of cystine/glutamate antiporter (system Xc-) activity through the BECN-SLC7A11 axis, where RFX1 directly binds to the promoter region of BECN1 and upregulates BECN1 expression. In addition, a STAT3-RFX1-BECN1 signalling loop was found to promote RFX1 expression in HCC cells.</p><p><strong>Conclusions: </strong>Our study reveals a novel mechanism underlying sorafenib-induced HCC cell death.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulatory factor X1 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by transcriptional regulation of BECN1.\",\"authors\":\"Zhiwen Yang, Yichuan Yuan, Yi Niu, Dinglan Zuo, Wenwu Liu, Kai Li, Yunxing Shi, Zhiyu Qiu, Keren Li, Zhu Lin, Chengrui Zhong, Zhenkun Huang, Wei He, Xinyuan Guan, Yunfei Yuan, Weian Zeng, Jiliang Qiu, Binkui Li\",\"doi\":\"10.1007/s13402-024-01017-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sorafenib is a commonly used first-line kinase-targeted drug for advanced hepatocellular carcinoma (HCC) patients suffering from limited efficacy. Emerging evidence indicates that sorafenib exerts anti-cancer activity through the induction of ferroptosis in HCC cells, but the underlying mechanism is still unclear.</p><p><strong>Methods: </strong>The whole transcriptome sequencing and bioinformatics analysis were used to screen for target genes. The expression and subcellular localization of regulatory factor X1 (RFX1) were determined through immunohistochemistry, immunofluorescence, PCR and western blot analyses. The impact of RFX1 on HCC cell growth was assessed using CCK8, colony formation assays, cell death assays, and animal experiments. Glutathione measurement, iron assay and lipid peroxidation detection assays were performed to investigate ferroptosis of HCC cells. The regulatory mechanism of RFX1 in HCC was investigated by sgRFX1, co-IP, ChIP and luciferase experiments. Immunohistochemical and survival analyses were performed to examine the prognostic significance of RFX1 in HCC.</p><p><strong>Results: </strong>In this study, we found that RFX1 promote ferroptosis in HCC cells. Further, we showed that sorafenib induces cell death through RFX1-mediated ferroptosis in HCC cells. The enhancing effect of RFX1 on HCC cell ferroptosis is largely dependent on inhibition of cystine/glutamate antiporter (system Xc-) activity through the BECN-SLC7A11 axis, where RFX1 directly binds to the promoter region of BECN1 and upregulates BECN1 expression. In addition, a STAT3-RFX1-BECN1 signalling loop was found to promote RFX1 expression in HCC cells.</p><p><strong>Conclusions: </strong>Our study reveals a novel mechanism underlying sorafenib-induced HCC cell death.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-024-01017-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-01017-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Regulatory factor X1 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by transcriptional regulation of BECN1.
Background: Sorafenib is a commonly used first-line kinase-targeted drug for advanced hepatocellular carcinoma (HCC) patients suffering from limited efficacy. Emerging evidence indicates that sorafenib exerts anti-cancer activity through the induction of ferroptosis in HCC cells, but the underlying mechanism is still unclear.
Methods: The whole transcriptome sequencing and bioinformatics analysis were used to screen for target genes. The expression and subcellular localization of regulatory factor X1 (RFX1) were determined through immunohistochemistry, immunofluorescence, PCR and western blot analyses. The impact of RFX1 on HCC cell growth was assessed using CCK8, colony formation assays, cell death assays, and animal experiments. Glutathione measurement, iron assay and lipid peroxidation detection assays were performed to investigate ferroptosis of HCC cells. The regulatory mechanism of RFX1 in HCC was investigated by sgRFX1, co-IP, ChIP and luciferase experiments. Immunohistochemical and survival analyses were performed to examine the prognostic significance of RFX1 in HCC.
Results: In this study, we found that RFX1 promote ferroptosis in HCC cells. Further, we showed that sorafenib induces cell death through RFX1-mediated ferroptosis in HCC cells. The enhancing effect of RFX1 on HCC cell ferroptosis is largely dependent on inhibition of cystine/glutamate antiporter (system Xc-) activity through the BECN-SLC7A11 axis, where RFX1 directly binds to the promoter region of BECN1 and upregulates BECN1 expression. In addition, a STAT3-RFX1-BECN1 signalling loop was found to promote RFX1 expression in HCC cells.
Conclusions: Our study reveals a novel mechanism underlying sorafenib-induced HCC cell death.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.