Enaam M Al Momany, Abeer M Rababa'h, Karem H Alzoubi, Omar F Khabour
{"title":"西洛他唑的基因保护作用减轻卡马西平诱导的人培养血液淋巴细胞的遗传毒性。","authors":"Enaam M Al Momany, Abeer M Rababa'h, Karem H Alzoubi, Omar F Khabour","doi":"10.1016/j.toxrep.2024.101814","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Carbamazepine is one of the most widely used antiepileptic drugs. Carbamazepine has been shown to be toxic to cells. Cilostazol, an antiplatelet agent, has known antioxidant, antiproliferative, anti-inflammatory, and anti-tumor effects.</p><p><strong>Objective: </strong>This study aimed to explore whether carbamazepine and cilostazol exert genotoxic and/or cytotoxic effects in human cultured blood lymphocytes and the impact of combining both drugs on such effects.</p><p><strong>Methods: </strong>Genotoxicity was examined using sister chromatid exchange (SCE) assay, while cytotoxicity was evaluated by cell kinetic assays (mitotic and proliferative indices).</p><p><strong>Results: </strong>Study findings have revealed that carbamazepine markedly increased SCEs (p<0.01), while cilostazol significantly decreased their frequencies (p<0.01). In addition, the frequency of SCEs of the combination of both drugs was similar to that of the control group (p>0.05). Carbamazepine increased the cell proliferative index (p<0.01) while cilostazol decreased it (p<0.01). The proliferative index was normalized to the control level when both drugs were combined.</p><p><strong>Conclusion: </strong>We suggest that cilostazol has the potential to protect human lymphocytes from carbamazepine-induced toxic effects.</p>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"13 ","pages":"101814"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626827/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cilostazol geno-protective effects mitigate carbamazepine-induced genotoxicity in human cultured blood lymphocytes.\",\"authors\":\"Enaam M Al Momany, Abeer M Rababa'h, Karem H Alzoubi, Omar F Khabour\",\"doi\":\"10.1016/j.toxrep.2024.101814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Carbamazepine is one of the most widely used antiepileptic drugs. Carbamazepine has been shown to be toxic to cells. Cilostazol, an antiplatelet agent, has known antioxidant, antiproliferative, anti-inflammatory, and anti-tumor effects.</p><p><strong>Objective: </strong>This study aimed to explore whether carbamazepine and cilostazol exert genotoxic and/or cytotoxic effects in human cultured blood lymphocytes and the impact of combining both drugs on such effects.</p><p><strong>Methods: </strong>Genotoxicity was examined using sister chromatid exchange (SCE) assay, while cytotoxicity was evaluated by cell kinetic assays (mitotic and proliferative indices).</p><p><strong>Results: </strong>Study findings have revealed that carbamazepine markedly increased SCEs (p<0.01), while cilostazol significantly decreased their frequencies (p<0.01). In addition, the frequency of SCEs of the combination of both drugs was similar to that of the control group (p>0.05). Carbamazepine increased the cell proliferative index (p<0.01) while cilostazol decreased it (p<0.01). The proliferative index was normalized to the control level when both drugs were combined.</p><p><strong>Conclusion: </strong>We suggest that cilostazol has the potential to protect human lymphocytes from carbamazepine-induced toxic effects.</p>\",\"PeriodicalId\":23129,\"journal\":{\"name\":\"Toxicology Reports\",\"volume\":\"13 \",\"pages\":\"101814\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626827/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.toxrep.2024.101814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.toxrep.2024.101814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Cilostazol geno-protective effects mitigate carbamazepine-induced genotoxicity in human cultured blood lymphocytes.
Background: Carbamazepine is one of the most widely used antiepileptic drugs. Carbamazepine has been shown to be toxic to cells. Cilostazol, an antiplatelet agent, has known antioxidant, antiproliferative, anti-inflammatory, and anti-tumor effects.
Objective: This study aimed to explore whether carbamazepine and cilostazol exert genotoxic and/or cytotoxic effects in human cultured blood lymphocytes and the impact of combining both drugs on such effects.
Methods: Genotoxicity was examined using sister chromatid exchange (SCE) assay, while cytotoxicity was evaluated by cell kinetic assays (mitotic and proliferative indices).
Results: Study findings have revealed that carbamazepine markedly increased SCEs (p<0.01), while cilostazol significantly decreased their frequencies (p<0.01). In addition, the frequency of SCEs of the combination of both drugs was similar to that of the control group (p>0.05). Carbamazepine increased the cell proliferative index (p<0.01) while cilostazol decreased it (p<0.01). The proliferative index was normalized to the control level when both drugs were combined.
Conclusion: We suggest that cilostazol has the potential to protect human lymphocytes from carbamazepine-induced toxic effects.