{"title":"影响胃肠道的化疗引起的神经病变。","authors":"Gema Vera, Kulmira Nurgali, Raquel Abalo","doi":"10.1111/nmo.14976","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer is a major global cause of morbidity and mortality. Survivorship is increasing, bringing new challenges. Cancer treatment, including chemotherapeutic drugs, immunotherapy, and radiotherapy, can have severe and impactful gastrointestinal side effects occurring shortly after treatment (acute toxicity) or persisting for years after treatment ends (late/chronic toxicity).</p><p><strong>Purpose: </strong>The aim of this article is to review the neurotoxic effects of chemotherapy on the enteric nervous system (ENS) and the gut extrinsic innervation. These effects could contribute to the development of long-term gastrointestinal dysfunctions. Research, primarily conducted in animal models, indicates that antitumoral drugs can lead to chemotherapy-induced enteric neuropathy (CIEN). Studies, mainly performed in the myenteric plexus, show that CIEN is characterized by a reduced density of nerve cells and fibers, as well as an imbalanced representation of neuronal subpopulations or their markers, with enteric glial cells also affected. These alterations underlie changes in neuronal activity and gastrointestinal motor function. Although research on the submucosal plexus remains limited, evidence suggests that CIEN affects the entire ENS. Furthermore, scarce studies show that CIEN also occurs in humans. Moreover, emerging experimental data on chemotherapy-induced alterations in visceral sensitivity suggest that the extrinsic innervation of the gut is also affected, but this has received little attention thus far. Nevertheless, this could contribute to the development of chemotherapy-induced brain-gut axis (BGA) disorders in the long term. Cancer chemotherapy (and probably also immunotherapy and radiotherapy) seems to cause neuropathic effects on the intrinsic and extrinsic innervation of the gastrointestinal tract, with an important impact on gastrointestinal and BGA functions. This is a relatively neglected area deserving further investigation.</p>","PeriodicalId":19123,"journal":{"name":"Neurogastroenterology and Motility","volume":" ","pages":"e14976"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemotherapy-Induced Neuropathy Affecting the Gastrointestinal Tract.\",\"authors\":\"Gema Vera, Kulmira Nurgali, Raquel Abalo\",\"doi\":\"10.1111/nmo.14976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cancer is a major global cause of morbidity and mortality. Survivorship is increasing, bringing new challenges. Cancer treatment, including chemotherapeutic drugs, immunotherapy, and radiotherapy, can have severe and impactful gastrointestinal side effects occurring shortly after treatment (acute toxicity) or persisting for years after treatment ends (late/chronic toxicity).</p><p><strong>Purpose: </strong>The aim of this article is to review the neurotoxic effects of chemotherapy on the enteric nervous system (ENS) and the gut extrinsic innervation. These effects could contribute to the development of long-term gastrointestinal dysfunctions. Research, primarily conducted in animal models, indicates that antitumoral drugs can lead to chemotherapy-induced enteric neuropathy (CIEN). Studies, mainly performed in the myenteric plexus, show that CIEN is characterized by a reduced density of nerve cells and fibers, as well as an imbalanced representation of neuronal subpopulations or their markers, with enteric glial cells also affected. These alterations underlie changes in neuronal activity and gastrointestinal motor function. Although research on the submucosal plexus remains limited, evidence suggests that CIEN affects the entire ENS. Furthermore, scarce studies show that CIEN also occurs in humans. Moreover, emerging experimental data on chemotherapy-induced alterations in visceral sensitivity suggest that the extrinsic innervation of the gut is also affected, but this has received little attention thus far. Nevertheless, this could contribute to the development of chemotherapy-induced brain-gut axis (BGA) disorders in the long term. Cancer chemotherapy (and probably also immunotherapy and radiotherapy) seems to cause neuropathic effects on the intrinsic and extrinsic innervation of the gastrointestinal tract, with an important impact on gastrointestinal and BGA functions. This is a relatively neglected area deserving further investigation.</p>\",\"PeriodicalId\":19123,\"journal\":{\"name\":\"Neurogastroenterology and Motility\",\"volume\":\" \",\"pages\":\"e14976\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurogastroenterology and Motility\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/nmo.14976\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogastroenterology and Motility","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nmo.14976","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Chemotherapy-Induced Neuropathy Affecting the Gastrointestinal Tract.
Background: Cancer is a major global cause of morbidity and mortality. Survivorship is increasing, bringing new challenges. Cancer treatment, including chemotherapeutic drugs, immunotherapy, and radiotherapy, can have severe and impactful gastrointestinal side effects occurring shortly after treatment (acute toxicity) or persisting for years after treatment ends (late/chronic toxicity).
Purpose: The aim of this article is to review the neurotoxic effects of chemotherapy on the enteric nervous system (ENS) and the gut extrinsic innervation. These effects could contribute to the development of long-term gastrointestinal dysfunctions. Research, primarily conducted in animal models, indicates that antitumoral drugs can lead to chemotherapy-induced enteric neuropathy (CIEN). Studies, mainly performed in the myenteric plexus, show that CIEN is characterized by a reduced density of nerve cells and fibers, as well as an imbalanced representation of neuronal subpopulations or their markers, with enteric glial cells also affected. These alterations underlie changes in neuronal activity and gastrointestinal motor function. Although research on the submucosal plexus remains limited, evidence suggests that CIEN affects the entire ENS. Furthermore, scarce studies show that CIEN also occurs in humans. Moreover, emerging experimental data on chemotherapy-induced alterations in visceral sensitivity suggest that the extrinsic innervation of the gut is also affected, but this has received little attention thus far. Nevertheless, this could contribute to the development of chemotherapy-induced brain-gut axis (BGA) disorders in the long term. Cancer chemotherapy (and probably also immunotherapy and radiotherapy) seems to cause neuropathic effects on the intrinsic and extrinsic innervation of the gastrointestinal tract, with an important impact on gastrointestinal and BGA functions. This is a relatively neglected area deserving further investigation.
期刊介绍:
Neurogastroenterology & Motility (NMO) is the official Journal of the European Society of Neurogastroenterology & Motility (ESNM) and the American Neurogastroenterology and Motility Society (ANMS). It is edited by James Galligan, Albert Bredenoord, and Stephen Vanner. The editorial and peer review process is independent of the societies affiliated to the journal and publisher: Neither the ANMS, the ESNM or the Publisher have editorial decision-making power. Whenever these are relevant to the content being considered or published, the editors, journal management committee and editorial board declare their interests and affiliations.