Julieta M. Manrique, Santiago Maffia-Bizzozero, M. Victoria Delpino, Jorge Quarleri, Leandro R. Jones
{"title":"SARS-CoV-2的多器官传播和宿主内多样性支持病毒的持久性、适应性和增加可进化性的机制","authors":"Julieta M. Manrique, Santiago Maffia-Bizzozero, M. Victoria Delpino, Jorge Quarleri, Leandro R. Jones","doi":"10.1002/jmv.70107","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Intra-host diversity is an intricate phenomenon related to immune evasion, antiviral resistance, and evolutionary leaps along transmission chains. SARS-CoV-2 intra-host variation has been well-evidenced from respiratory samples. However, data on systemic dissemination and diversification are relatively scarce and come from immunologically impaired patients. Here, the presence and variability of SARS-CoV-2 were assessed among 71 tissue samples obtained from multiple organs including lung, intestine, heart, kidney, and liver from 15 autopsies with positive swabs and no records of immunocompromise. The virus was detected in most organs in the majority of autopsies. All organs presented intra-host single nucleotide variants (iSNVs) with low, moderate, and high abundances. The iSNV abundances observed within different organs indicate that the virus can mutate at one host site and subsequently spread to other parts of the body. In agreement with previous data from respiratory samples, our lung samples presented no more than 10 iSNVs each. But interestingly, when analyzing different organs we were able to detect between 11 and 45 iSNVs per case. Our results indicate that SARS-CoV-2 can replicate, and evolve in a compartmentalized manner, in different body sites, which agrees with the “viral reservoir” theory. We elaborate on how compartmentalized evolution in multiple organs may contribute to SARS-CoV-2 evolving so rapidly despite the virus having a proofreading mechanism.</p>\n </div>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"96 12","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Organ Spread and Intra-Host Diversity of SARS-CoV-2 Support Viral Persistence, Adaptation, and a Mechanism That Increases Evolvability\",\"authors\":\"Julieta M. Manrique, Santiago Maffia-Bizzozero, M. Victoria Delpino, Jorge Quarleri, Leandro R. Jones\",\"doi\":\"10.1002/jmv.70107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Intra-host diversity is an intricate phenomenon related to immune evasion, antiviral resistance, and evolutionary leaps along transmission chains. SARS-CoV-2 intra-host variation has been well-evidenced from respiratory samples. However, data on systemic dissemination and diversification are relatively scarce and come from immunologically impaired patients. Here, the presence and variability of SARS-CoV-2 were assessed among 71 tissue samples obtained from multiple organs including lung, intestine, heart, kidney, and liver from 15 autopsies with positive swabs and no records of immunocompromise. The virus was detected in most organs in the majority of autopsies. All organs presented intra-host single nucleotide variants (iSNVs) with low, moderate, and high abundances. The iSNV abundances observed within different organs indicate that the virus can mutate at one host site and subsequently spread to other parts of the body. In agreement with previous data from respiratory samples, our lung samples presented no more than 10 iSNVs each. But interestingly, when analyzing different organs we were able to detect between 11 and 45 iSNVs per case. Our results indicate that SARS-CoV-2 can replicate, and evolve in a compartmentalized manner, in different body sites, which agrees with the “viral reservoir” theory. We elaborate on how compartmentalized evolution in multiple organs may contribute to SARS-CoV-2 evolving so rapidly despite the virus having a proofreading mechanism.</p>\\n </div>\",\"PeriodicalId\":16354,\"journal\":{\"name\":\"Journal of Medical Virology\",\"volume\":\"96 12\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70107\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70107","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
Multi-Organ Spread and Intra-Host Diversity of SARS-CoV-2 Support Viral Persistence, Adaptation, and a Mechanism That Increases Evolvability
Intra-host diversity is an intricate phenomenon related to immune evasion, antiviral resistance, and evolutionary leaps along transmission chains. SARS-CoV-2 intra-host variation has been well-evidenced from respiratory samples. However, data on systemic dissemination and diversification are relatively scarce and come from immunologically impaired patients. Here, the presence and variability of SARS-CoV-2 were assessed among 71 tissue samples obtained from multiple organs including lung, intestine, heart, kidney, and liver from 15 autopsies with positive swabs and no records of immunocompromise. The virus was detected in most organs in the majority of autopsies. All organs presented intra-host single nucleotide variants (iSNVs) with low, moderate, and high abundances. The iSNV abundances observed within different organs indicate that the virus can mutate at one host site and subsequently spread to other parts of the body. In agreement with previous data from respiratory samples, our lung samples presented no more than 10 iSNVs each. But interestingly, when analyzing different organs we were able to detect between 11 and 45 iSNVs per case. Our results indicate that SARS-CoV-2 can replicate, and evolve in a compartmentalized manner, in different body sites, which agrees with the “viral reservoir” theory. We elaborate on how compartmentalized evolution in multiple organs may contribute to SARS-CoV-2 evolving so rapidly despite the virus having a proofreading mechanism.
期刊介绍:
The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells.
The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists.
The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.