抑制金黄色葡萄球菌毒力蛋白表达的候选人microrna的硅杂交和分子动力学模拟

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of cellular biochemistry Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI:10.1002/jcb.30684
Harshita Tiwari, Subhadip Saha, Monidipa Ghosh
{"title":"抑制金黄色葡萄球菌毒力蛋白表达的候选人microrna的硅杂交和分子动力学模拟","authors":"Harshita Tiwari, Subhadip Saha, Monidipa Ghosh","doi":"10.1002/jcb.30684","DOIUrl":null,"url":null,"abstract":"<p><p>Staphylococcus aureus is a major threat to human health, causing infections that range in severity from moderate to fatal. The rising rates of antibiotic resistance highlight the critical need for new therapeutic techniques to combat this infection. It has been recently discovered that microRNAs (miRNAs) are essential for cross-kingdom communication, especially when it comes to host-pathogen interactions. It has been demonstrated that these short noncoding RNAs control gene expression in the gut microbiota, maintaining homeostasis; dysbiosis in this system has been linked to several diseases, including cancer. Our research attempts to use this understanding to target specific bacterial species and prevent severe diseases. In particular, we look for putative human miRNAs that can attach to virulent bacterial proteins' mRNA and prevent them from being expressed. In-silico hybridization experiments were performed between 100 human miRNA sequences with varied expression levels in gram-positive bacterial infections and five virulence factor genes. In addition, these miRNAs' binding properties were investigated using molecular dynamics (MD) simulations. Our findings demonstrate that human miRNAs can target and inhibit the expression of bacterial virulent genes, thereby opening up new paths for developing innovative miRNA-based therapeutics. The implementation of MD simulations in our study not only improves the validity of our findings but also proposes a new method for constructing miRNA-based therapies against life-threatening bacterial infections.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":" ","pages":"e30684"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735889/pdf/","citationCount":"0","resultStr":"{\"title\":\"In Silico Hybridization and Molecular Dynamics Simulations for the Identification of Candidate Human MicroRNAs for Inhibition of Virulent Proteins' Expression in Staphylococcus aureus.\",\"authors\":\"Harshita Tiwari, Subhadip Saha, Monidipa Ghosh\",\"doi\":\"10.1002/jcb.30684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Staphylococcus aureus is a major threat to human health, causing infections that range in severity from moderate to fatal. The rising rates of antibiotic resistance highlight the critical need for new therapeutic techniques to combat this infection. It has been recently discovered that microRNAs (miRNAs) are essential for cross-kingdom communication, especially when it comes to host-pathogen interactions. It has been demonstrated that these short noncoding RNAs control gene expression in the gut microbiota, maintaining homeostasis; dysbiosis in this system has been linked to several diseases, including cancer. Our research attempts to use this understanding to target specific bacterial species and prevent severe diseases. In particular, we look for putative human miRNAs that can attach to virulent bacterial proteins' mRNA and prevent them from being expressed. In-silico hybridization experiments were performed between 100 human miRNA sequences with varied expression levels in gram-positive bacterial infections and five virulence factor genes. In addition, these miRNAs' binding properties were investigated using molecular dynamics (MD) simulations. Our findings demonstrate that human miRNAs can target and inhibit the expression of bacterial virulent genes, thereby opening up new paths for developing innovative miRNA-based therapeutics. The implementation of MD simulations in our study not only improves the validity of our findings but also proposes a new method for constructing miRNA-based therapies against life-threatening bacterial infections.</p>\",\"PeriodicalId\":15219,\"journal\":{\"name\":\"Journal of cellular biochemistry\",\"volume\":\" \",\"pages\":\"e30684\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735889/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cellular biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jcb.30684\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jcb.30684","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

金黄色葡萄球菌是对人类健康的主要威胁,引起的感染严重程度从中度到致命。抗生素耐药性的上升突出表明迫切需要新的治疗技术来对抗这种感染。最近发现,microRNAs (miRNAs)对于跨界交流至关重要,特别是当涉及到宿主-病原体相互作用时。已经证明,这些短的非编码rna控制肠道微生物群中的基因表达,维持体内平衡;该系统的生态失调与包括癌症在内的几种疾病有关。我们的研究试图利用这一认识来针对特定的细菌种类并预防严重的疾病。特别是,我们寻找假定的人类mirna,可以附着在有毒细菌蛋白的mRNA上并阻止它们的表达。对革兰氏阳性细菌感染中不同表达水平的100个人类miRNA序列与5个毒力因子基因进行了硅基杂交实验。此外,利用分子动力学(MD)模拟研究了这些mirna的结合特性。我们的研究结果表明,人类mirna可以靶向和抑制细菌毒力基因的表达,从而为开发创新的基于mirna的治疗方法开辟了新的途径。在我们的研究中,MD模拟的实施不仅提高了我们研究结果的有效性,而且为构建基于mirna的治疗方法来对抗危及生命的细菌感染提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Silico Hybridization and Molecular Dynamics Simulations for the Identification of Candidate Human MicroRNAs for Inhibition of Virulent Proteins' Expression in Staphylococcus aureus.

Staphylococcus aureus is a major threat to human health, causing infections that range in severity from moderate to fatal. The rising rates of antibiotic resistance highlight the critical need for new therapeutic techniques to combat this infection. It has been recently discovered that microRNAs (miRNAs) are essential for cross-kingdom communication, especially when it comes to host-pathogen interactions. It has been demonstrated that these short noncoding RNAs control gene expression in the gut microbiota, maintaining homeostasis; dysbiosis in this system has been linked to several diseases, including cancer. Our research attempts to use this understanding to target specific bacterial species and prevent severe diseases. In particular, we look for putative human miRNAs that can attach to virulent bacterial proteins' mRNA and prevent them from being expressed. In-silico hybridization experiments were performed between 100 human miRNA sequences with varied expression levels in gram-positive bacterial infections and five virulence factor genes. In addition, these miRNAs' binding properties were investigated using molecular dynamics (MD) simulations. Our findings demonstrate that human miRNAs can target and inhibit the expression of bacterial virulent genes, thereby opening up new paths for developing innovative miRNA-based therapeutics. The implementation of MD simulations in our study not only improves the validity of our findings but also proposes a new method for constructing miRNA-based therapies against life-threatening bacterial infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of cellular biochemistry
Journal of cellular biochemistry 生物-生化与分子生物学
CiteScore
9.90
自引率
0.00%
发文量
164
审稿时长
1 months
期刊介绍: The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信