Piezo1-TRPV4动力学的体外检测:对正常妊娠和子痫前期妊娠胎盘内皮功能的影响。

IF 5 2区 生物学 Q2 CELL BIOLOGY
Hanna H Allerkamp, Alexander I Bondarenko, Ines Tawfik, Nilüfer Kamali-Simsek, Monika Horvat Mercnik, Corina T Madreiter-Sokolowski, Christian Wadsack
{"title":"Piezo1-TRPV4动力学的体外检测:对正常妊娠和子痫前期妊娠胎盘内皮功能的影响。","authors":"Hanna H Allerkamp, Alexander I Bondarenko, Ines Tawfik, Nilüfer Kamali-Simsek, Monika Horvat Mercnik, Corina T Madreiter-Sokolowski, Christian Wadsack","doi":"10.1152/ajpcell.00794.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanosensation is essential for endothelial cell (EC) function, which is compromised in early-onset preeclampsia (EPE), impacting offspring health. The ion channels Piezo-type mechanosensitive ion channel component 1 (Piezo1) and transient receptor potential cation channel subfamily V member 4 (TRPV4) are coregulated mechanosensors in ECs. Current evidence suggests that both channels could mediate aberrant placental endothelial function in EPE. Using isolated fetoplacental ECs (fpECs) from early control (EC) and EPE pregnancies, we show functional coexpression of both channels and that Ca<sup>2+</sup> influx and membrane depolarization in response to chemical channel activation is reduced in EPE fpECs. Downstream of channel activation, Piezo1 alone can induce phosphorylation of endothelial nitric oxide synthase (eNOS) in fpECs, while combined activation of Piezo1 and TRPV4 only affects eNOS phosphorylation in EPE fpECs. Additionally, combined activation reduces the barrier integrity of fpECs and has a stronger effect on EPE fpECs. This implies altered Piezo1-TRPV4 coregulation in EPE. Mechanistically, we suggest this to be driven by changes in the arachidonic acid metabolism in EPE fpECs as identified by RNA sequencing. Targeting of Piezo1 and TRPV4 might hold potential for EPE treatment options in the future.<b>NEW & NOTEWORTHY</b> This study shows Piezo-type mechanosensitive ion channel component 1 (Piezo1) and transient receptor potential cation channel subfamily V member 4 (TRPV4) coexpression and functionality within primary human fetoplacental endothelial cells (fpECs), mediating nitric oxide (NO) production and barrier integrity. In early-onset preeclampsia (EPE), fpEC channel functionality and coregulation are impaired, affecting Ca<sup>2+</sup> signaling and endothelial barrier function. Combined channel activation significantly reduces endothelial barrier integrity and increases NO production in EPE. Changes in arachidonic acid metabolism are suggested as a key underlying factor mediating impaired channel functionality in EPE fpECs.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C227-C244"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro examination of Piezo1-TRPV4 dynamics: implications for placental endothelial function in normal and preeclamptic pregnancies.\",\"authors\":\"Hanna H Allerkamp, Alexander I Bondarenko, Ines Tawfik, Nilüfer Kamali-Simsek, Monika Horvat Mercnik, Corina T Madreiter-Sokolowski, Christian Wadsack\",\"doi\":\"10.1152/ajpcell.00794.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanosensation is essential for endothelial cell (EC) function, which is compromised in early-onset preeclampsia (EPE), impacting offspring health. The ion channels Piezo-type mechanosensitive ion channel component 1 (Piezo1) and transient receptor potential cation channel subfamily V member 4 (TRPV4) are coregulated mechanosensors in ECs. Current evidence suggests that both channels could mediate aberrant placental endothelial function in EPE. Using isolated fetoplacental ECs (fpECs) from early control (EC) and EPE pregnancies, we show functional coexpression of both channels and that Ca<sup>2+</sup> influx and membrane depolarization in response to chemical channel activation is reduced in EPE fpECs. Downstream of channel activation, Piezo1 alone can induce phosphorylation of endothelial nitric oxide synthase (eNOS) in fpECs, while combined activation of Piezo1 and TRPV4 only affects eNOS phosphorylation in EPE fpECs. Additionally, combined activation reduces the barrier integrity of fpECs and has a stronger effect on EPE fpECs. This implies altered Piezo1-TRPV4 coregulation in EPE. Mechanistically, we suggest this to be driven by changes in the arachidonic acid metabolism in EPE fpECs as identified by RNA sequencing. Targeting of Piezo1 and TRPV4 might hold potential for EPE treatment options in the future.<b>NEW & NOTEWORTHY</b> This study shows Piezo-type mechanosensitive ion channel component 1 (Piezo1) and transient receptor potential cation channel subfamily V member 4 (TRPV4) coexpression and functionality within primary human fetoplacental endothelial cells (fpECs), mediating nitric oxide (NO) production and barrier integrity. In early-onset preeclampsia (EPE), fpEC channel functionality and coregulation are impaired, affecting Ca<sup>2+</sup> signaling and endothelial barrier function. Combined channel activation significantly reduces endothelial barrier integrity and increases NO production in EPE. Changes in arachidonic acid metabolism are suggested as a key underlying factor mediating impaired channel functionality in EPE fpECs.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C227-C244\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00794.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00794.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

机械感觉对内皮细胞(EC)功能至关重要,早发性子痫前期(EPE)内皮细胞功能受损,影响后代健康。压电型机械敏感离子通道组分1 (Piezo1)和瞬态受体电位阳离子通道亚家族成员4 (TRPV4)是ECs中协同调节的机械传感器。目前的证据表明,这两个通道都可能介导EPE中胎盘内皮功能的异常。使用早期对照妊娠和EPE妊娠分离的胎胎盘内皮细胞(fpec),我们发现这两个通道的功能共表达,并且在EPE fpec中,Ca2+内流和响应化学通道激活的膜去极化减少。在通道激活的下游,Piezo1单独可以诱导内皮型一氧化氮合酶(eNOS)在fpec中磷酸化,而Piezo1和TRPV4联合激活仅影响eNOS在EPE fpec中的磷酸化。此外,联合激活降低了fpec的屏障完整性,对EPE fpec也有更强的影响。这意味着EPE中Piezo1-TRPV4的共调节发生了改变。从机制上讲,我们认为这是由RNA-Seq鉴定的EPE fpec中花生四烯酸代谢的变化所驱动的。以Piezo1和TRPV4为靶点,可能在未来成为EPE治疗的潜在选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vitro examination of Piezo1-TRPV4 dynamics: implications for placental endothelial function in normal and preeclamptic pregnancies.

Mechanosensation is essential for endothelial cell (EC) function, which is compromised in early-onset preeclampsia (EPE), impacting offspring health. The ion channels Piezo-type mechanosensitive ion channel component 1 (Piezo1) and transient receptor potential cation channel subfamily V member 4 (TRPV4) are coregulated mechanosensors in ECs. Current evidence suggests that both channels could mediate aberrant placental endothelial function in EPE. Using isolated fetoplacental ECs (fpECs) from early control (EC) and EPE pregnancies, we show functional coexpression of both channels and that Ca2+ influx and membrane depolarization in response to chemical channel activation is reduced in EPE fpECs. Downstream of channel activation, Piezo1 alone can induce phosphorylation of endothelial nitric oxide synthase (eNOS) in fpECs, while combined activation of Piezo1 and TRPV4 only affects eNOS phosphorylation in EPE fpECs. Additionally, combined activation reduces the barrier integrity of fpECs and has a stronger effect on EPE fpECs. This implies altered Piezo1-TRPV4 coregulation in EPE. Mechanistically, we suggest this to be driven by changes in the arachidonic acid metabolism in EPE fpECs as identified by RNA sequencing. Targeting of Piezo1 and TRPV4 might hold potential for EPE treatment options in the future.NEW & NOTEWORTHY This study shows Piezo-type mechanosensitive ion channel component 1 (Piezo1) and transient receptor potential cation channel subfamily V member 4 (TRPV4) coexpression and functionality within primary human fetoplacental endothelial cells (fpECs), mediating nitric oxide (NO) production and barrier integrity. In early-onset preeclampsia (EPE), fpEC channel functionality and coregulation are impaired, affecting Ca2+ signaling and endothelial barrier function. Combined channel activation significantly reduces endothelial barrier integrity and increases NO production in EPE. Changes in arachidonic acid metabolism are suggested as a key underlying factor mediating impaired channel functionality in EPE fpECs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信