靶向癌症治疗的肌肽-乳质体输送系统。

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Amira Atta, Maha M Salem, Ahmed Reda, Tarek M Mohamed
{"title":"靶向癌症治疗的肌肽-乳质体输送系统。","authors":"Amira Atta, Maha M Salem, Ahmed Reda, Tarek M Mohamed","doi":"10.1007/s12013-024-01626-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is considered to be among the main causes of death worldwide. Treatment options for cancer are numerous. The type of cancer and its stage of progression determine which kind of treatment is needed. Nanomedicine is a new field for the treatment of various diseases. Pharmaceutical nanocarriers can be fabricated from various materials such as polymers, metals, or lipid-based surfactants. Carnosine-loaded niosomes have emerged as a promising approach in targeted cancer therapy, offering potential advantages over conventional treatments such as chemotherapy and radiation, by improving drug delivery specificity and reducing side effects. The study demonstrates that the encapsulation of carnosine in niosomes enhances its stability and bioavailability, leading to a significant increase in anticancer efficacy. These findings suggest that niosome technology can serve as an effective delivery system for carnosine, potentially transforming its use in cancer treatment and paving the way for future research in targeted therapies. Nanomaterials provide a good delivery system for this method of treatment. It's used in the treatment and diagnosis of diseases. Numerous investigations have been conducted on nanoscale vesicular systems, such as the most recent generations of vesicular nanocarriers, liposomes, and niosomes. Lipophilic and hydrophilic bioactive chemicals are transported via the niosomes in a vesicle. Since niosomes are composed of non-ionic surfactants mixed with cholesterol or other amphiphilic substances, they have a wide range of applications. The therapy of cancer with carnosine-loaded niosomes is one of these uses. The body synthesizes carnosine, a histidine-containing dipeptide, by enzymatically mixing L-histidine and β-alanine. With its antioxidant activities, Carnosine is considered a drug that can reduce and treat cancerous cells and many other therapeutic applications.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Carnosine-Niosomal Delivery System for Targeted Cancer Therapy\\\".\",\"authors\":\"Amira Atta, Maha M Salem, Ahmed Reda, Tarek M Mohamed\",\"doi\":\"10.1007/s12013-024-01626-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is considered to be among the main causes of death worldwide. Treatment options for cancer are numerous. The type of cancer and its stage of progression determine which kind of treatment is needed. Nanomedicine is a new field for the treatment of various diseases. Pharmaceutical nanocarriers can be fabricated from various materials such as polymers, metals, or lipid-based surfactants. Carnosine-loaded niosomes have emerged as a promising approach in targeted cancer therapy, offering potential advantages over conventional treatments such as chemotherapy and radiation, by improving drug delivery specificity and reducing side effects. The study demonstrates that the encapsulation of carnosine in niosomes enhances its stability and bioavailability, leading to a significant increase in anticancer efficacy. These findings suggest that niosome technology can serve as an effective delivery system for carnosine, potentially transforming its use in cancer treatment and paving the way for future research in targeted therapies. Nanomaterials provide a good delivery system for this method of treatment. It's used in the treatment and diagnosis of diseases. Numerous investigations have been conducted on nanoscale vesicular systems, such as the most recent generations of vesicular nanocarriers, liposomes, and niosomes. Lipophilic and hydrophilic bioactive chemicals are transported via the niosomes in a vesicle. Since niosomes are composed of non-ionic surfactants mixed with cholesterol or other amphiphilic substances, they have a wide range of applications. The therapy of cancer with carnosine-loaded niosomes is one of these uses. The body synthesizes carnosine, a histidine-containing dipeptide, by enzymatically mixing L-histidine and β-alanine. With its antioxidant activities, Carnosine is considered a drug that can reduce and treat cancerous cells and many other therapeutic applications.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01626-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01626-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症被认为是全世界死亡的主要原因之一。癌症的治疗方案有很多。癌症的类型和发展阶段决定了需要哪种治疗。纳米医学是治疗多种疾病的一个新领域。药物纳米载体可以由各种材料制成,如聚合物、金属或脂基表面活性剂。肌肽装载niosomes已成为一种很有前景的靶向癌症治疗方法,通过提高药物传递特异性和减少副作用,具有优于化疗和放疗等传统治疗方法的潜在优势。研究表明,肌肽包封在小体中可以提高其稳定性和生物利用度,从而显著提高抗癌功效。这些发现表明,肌肽体技术可以作为肌肽的有效递送系统,有可能改变其在癌症治疗中的应用,并为未来的靶向治疗研究铺平道路。纳米材料为这种治疗方法提供了良好的输送系统。它被用于疾病的治疗和诊断。对纳米级囊泡系统进行了大量的研究,如最新一代的囊泡纳米载体、脂质体和乳质体。亲脂性和亲水性生物活性化学物质在囊泡中通过膜小体运输。由于乳质体是由非离子表面活性剂与胆固醇或其他两亲性物质混合而成,因此具有广泛的应用前景。用装载肌肽的小体治疗癌症就是这些用途之一。人体通过将l -组氨酸和β-丙氨酸酶化混合来合成肌肽,这是一种含组氨酸的二肽。由于其抗氧化活性,肌肽被认为是一种可以减少和治疗癌细胞和许多其他治疗应用的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"Carnosine-Niosomal Delivery System for Targeted Cancer Therapy".

Cancer is considered to be among the main causes of death worldwide. Treatment options for cancer are numerous. The type of cancer and its stage of progression determine which kind of treatment is needed. Nanomedicine is a new field for the treatment of various diseases. Pharmaceutical nanocarriers can be fabricated from various materials such as polymers, metals, or lipid-based surfactants. Carnosine-loaded niosomes have emerged as a promising approach in targeted cancer therapy, offering potential advantages over conventional treatments such as chemotherapy and radiation, by improving drug delivery specificity and reducing side effects. The study demonstrates that the encapsulation of carnosine in niosomes enhances its stability and bioavailability, leading to a significant increase in anticancer efficacy. These findings suggest that niosome technology can serve as an effective delivery system for carnosine, potentially transforming its use in cancer treatment and paving the way for future research in targeted therapies. Nanomaterials provide a good delivery system for this method of treatment. It's used in the treatment and diagnosis of diseases. Numerous investigations have been conducted on nanoscale vesicular systems, such as the most recent generations of vesicular nanocarriers, liposomes, and niosomes. Lipophilic and hydrophilic bioactive chemicals are transported via the niosomes in a vesicle. Since niosomes are composed of non-ionic surfactants mixed with cholesterol or other amphiphilic substances, they have a wide range of applications. The therapy of cancer with carnosine-loaded niosomes is one of these uses. The body synthesizes carnosine, a histidine-containing dipeptide, by enzymatically mixing L-histidine and β-alanine. With its antioxidant activities, Carnosine is considered a drug that can reduce and treat cancerous cells and many other therapeutic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信